The stochastic relativistic advection diffusion equation from the Metropolis algorithm (2403.04185v2)
Abstract: We study an approach to simulating the stochastic relativistic advection-diffusion equation based on the Metropolis algorithm. We show that the dissipative dynamics of the boosted fluctuating fluid can be simulated by making random transfers of charge between fluid cells, interspersed with ideal hydrodynamic time steps. The random charge transfers are accepted or rejected in a Metropolis step using the entropy as a statistical weight. This procedure reproduces the expected strains of dissipative relativistic hydrodynamics in a specific (and non-covariant) hydrodynamic frame known as the density frame. Numerical results, both with and without noise, are presented and compared to relativistic kinetics and analytical expectations. An all order resummation of the density frame gradient expansion reproduces the covariant dynamics in a specific model. In contrast to all other numerical approaches to relativistic dissipative fluids, the dissipative fluid formalism presented here is strictly first order in gradients and has no non-hydrodynamic modes. The physical naturalness and simplicity of the Metropolis algorithm, together with its convergence properties, make it a promising tool for simulating stochastic relativistic fluids in heavy ion collisions and for critical phenomena in the relativistic domain.
- U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions,” Ann. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl-th].
- J. E. Bernhard, J. S. Moreland, and S. A. Bass, “Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma,” Nature Phys. 15 no. 11, (2019) 1113–1117.
- G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, “Transverse momentum differential global analysis of heavy-ion collisions,” Phys. Rev. Lett. 126 (May, 2021) 202301. https://link.aps.org/doi/10.1103/PhysRevLett.126.202301.
- JETSCAPE Collaboration, D. Everett et al., “Multisystem bayesian constraints on the transport coefficients of qcd matter,” Phys. Rev. C 103 (May, 2021) 054904. https://link.aps.org/doi/10.1103/PhysRevC.103.054904.
- M. Heffernan, Quantification of the Quark-Gluon Plasma with statistical learning. PhD thesis, McGill U., 4, 2023. https://escholarship.mcgill.ca/concern/theses/0r967886q.
- M. Arslandok et al., “Hot QCD White Paper,” arXiv:2303.17254 [nucl-ex].
- R. D. Pisarski and F. Wilczek, “Remarks on the Chiral Phase Transition in Chromodynamics,” Phys. Rev. D 29 (1984) 338–341.
- K. Rajagopal and F. Wilczek, “Static and dynamic critical phenomena at a second order QCD phase transition,” Nucl. Phys. B 399 (1993) 395–425, arXiv:hep-ph/9210253.
- HotQCD Collaboration, H. T. Ding et al., “Chiral Phase Transition Temperature in ( 2+1 )-Flavor QCD,” Phys. Rev. Lett. 123 no. 6, (2019) 062002, arXiv:1903.04801 [hep-lat].
- O. Kaczmarek, F. Karsch, A. Lahiri, L. Mazur, and C. Schmidt, “QCD phase transition in the chiral limit,” 3, 2020. arXiv:2003.07920 [hep-lat].
- M. A. Stephanov, “QCD Phase Diagram and the Critical Point,” Prog. Theor. Phys. Suppl. 153 (2004) 139–156, arXiv:hep-ph/0402115.
- L. Du, A. Sorensen, and M. Stephanov, “The QCD phase diagram and Beam Energy Scan physics: a theory overview,” 2, 2024. arXiv:2402.10183 [nucl-th].
- D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, 4 ed., 2014.
- A. Florio, E. Grossi, A. Soloviev, and D. Teaney, “Dynamics of the O(4)𝑂4O(4)italic_O ( 4 ) critical point in QCD,” Phys. Rev. D 105 no. 5, (2022) 054512, arXiv:2111.03640 [hep-lat].
- P. J. Rossky, J. D. Doll, and H. L. Friedman, “Brownian dynamics as smart Monte Carlo simulation,” The Journal of Chemical Physics 69 no. 10, (11, 1978) 4628–4633. https://doi.org/10.1063/1.436415.
- G. D. Moore, “The Sphaleron rate: Bodeker’s leading log,” Nucl. Phys. B 568 (2000) 367–404, arXiv:hep-ph/9810313.
- P. B. Arnold, “Langevin equations with multiplicative noise: Resolution of time discretization ambiguities for equilibrium systems,” Phys. Rev. E 61 (2000) 6091–6098, arXiv:hep-ph/9912208.
- P. Gao, P. Glorioso, and H. Liu, “Ghostbusters: Unitarity and Causality of Non-equilibrium Effective Field Theories,” JHEP 03 (2020) 040, arXiv:1803.10778 [hep-th].
- A. Florio, E. Grossi, and D. Teaney, “Dynamics of the O(4)𝑂4O(4)italic_O ( 4 ) critical point in QCD: critical pions and diffusion in Model G,” arXiv:2306.06887 [hep-lat].
- C. Chattopadhyay, J. Ott, T. Schaefer, and V. Skokov, “Dynamic scaling of order parameter fluctuations in model B,” Phys. Rev. D 108 no. 7, (2023) 074004, arXiv:2304.07279 [nucl-th].
- Elsevier, 2013.
- W. A. Hiscock and L. Lindblom, “Generic instabilities in first-order dissipative relativistic fluid theories,” Phys. Rev. D 31 (1985) 725–733.
- L. Gavassino, “Can We Make Sense of Dissipation without Causality?,” Phys. Rev. X 12 no. 4, (2022) 041001, arXiv:2111.05254 [gr-qc].
- W. Israel, “Nonstationary irreversible thermodynamics: A Causal relativistic theory,” Annals Phys. 100 (1976) 310–331.
- W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,” Annals Phys. 118 (1979) 341–372.
- R. P. Geroch and L. Lindblom, “Dissipative relativistic fluid theories of divergence type,” Phys. Rev. D 41 (1990) 1855.
- H. C. Öttinger, “Relativistic and nonrelativistic description of fluids with anisotropic heat conduction,” Physica A: Statistical Mechanics and its Applications 254 no. 3, (1998) 433–450. https://www.sciencedirect.com/science/article/pii/S0378437198000454.
- F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Causality and existence of solutions of relativistic viscous fluid dynamics with gravity,” Phys. Rev. D 98 no. 10, (2018) 104064, arXiv:1708.06255 [gr-qc].
- P. Kovtun, “First-order relativistic hydrodynamics is stable,” JHEP 10 (2019) 034, arXiv:1907.08191 [hep-th].
- L. Lindblom, “The Relaxation effect in dissipative relativistic fluid theories,” Annals Phys. 247 (1996) 1, arXiv:gr-qc/9508058.
- M. P. Heller, A. Serantes, M. Spaliński, and B. Withers, “Rigorous Bounds on Transport from Causality,” Phys. Rev. Lett. 130 no. 26, (2023) 261601, arXiv:2212.07434 [hep-th].
- L. Gavassino, “Bounds on transport from hydrodynamic stability,” Physics Letters B 840 (2023) 137854. https://www.sciencedirect.com/science/article/pii/S0370269323001880.
- L. Gavassino, M. M. Disconzi, and J. Noronha, “Dispersion relations alone cannot guarantee causality,” arXiv:2307.05987 [hep-th].
- I. Novak, J. Sonner, and B. Withers, “Hydrodynamics without boosts,” JHEP 07 (2020) 165, arXiv:1911.02578 [hep-th].
- J. de Boer, J. Hartong, E. Have, N. A. Obers, and W. Sybesma, “Non-Boost Invariant Fluid Dynamics,” SciPost Phys. 9 no. 2, (2020) 018, arXiv:2004.10759 [hep-th].
- J. Armas and A. Jain, “Effective field theory for hydrodynamics without boosts,” SciPost Phys. 11 no. 3, (2021) 054, arXiv:2010.15782 [hep-th].
- M. Crossley, P. Glorioso, and H. Liu, “Effective field theory of dissipative fluids,” JHEP 09 (2017) 095, arXiv:1511.03646 [hep-th].
- P. Glorioso, M. Crossley, and H. Liu, “Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current,” JHEP 09 (2017) 096, arXiv:1701.07817 [hep-th].
- N. Mullins, M. Hippert, and J. Noronha, “Stochastic fluctuations in relativistic fluids: Causality, stability, and the information current,” Phys. Rev. D 108 no. 7, (2023) 076013, arXiv:2306.08635 [nucl-th].
- L. Gavassino, N. Mullins, and M. Hippert, “Consistent inclusion of fluctuations in first-order causal and stable relativistic hydrodynamics,” arXiv:2402.06776 [nucl-th].
- M. Singh, C. Shen, S. McDonald, S. Jeon, and C. Gale, “Hydrodynamic Fluctuations in Relativistic Heavy-Ion Collisions,” Nucl. Phys. A 982 (2019) 319–322, arXiv:1807.05451 [nucl-th].
- World Scientific, 2010. arXiv:0905.2433 [nucl-th].
- R. E. Hoult and P. Kovtun, “Causality and classical dispersion relations,” Phys. Rev. D 109 no. 4, (2024) 046018, arXiv:2309.11703 [hep-th].
- A. Kurganov and E. Tadmor, “New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations,” J. Comput. Phys. 160 (2000) 241–282.
- L. D. Zanna and N. Bucciantini, “An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. hydrodynamics,” Astron. Astrophys. 390 (2002) 1177, arXiv:astro-ph/0205290.
- B. Schenke, S. Jeon, and C. Gale, “(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions,” Phys. Rev. C 82 (2010) 014903, arXiv:1004.1408 [hep-ph].
- S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, “High order strong stability preserving time discretizations,” Journal of Scientific Computing 38 no. 3, (Mar, 2009) 251–289. https://doi.org/10.1007/s10915-008-9239-z.
- S. Balay et al., “PETSc Web page.” https://petsc.org/, 2023. https://petsc.org/.
- I. Dzyaloshinskii and G. Volovick, “Poisson brackets in condensed matter physics,” Annals of Physics 125 no. 1, (1980) 67–97. https://www.sciencedirect.com/science/article/pii/0003491680901190.
- D.-L. Wang and S. Pu, “Stability and causality criteria in linear mode analysis: Stability means causality,” Phys. Rev. D 109 no. 3, (2024) L031504, arXiv:2309.11708 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.