Papers
Topics
Authors
Recent
2000 character limit reached

Investigation of nanophotonic lithium niobate waveguides for on-chip evanescent wave sensing (2403.04174v2)

Published 7 Mar 2024 in physics.optics and physics.app-ph

Abstract: Thin-film lithium niobate is a promising photonic platform for on-chip optical sensing because both nonlinear and linear components can be fabricated within one integrated device. To date, waveguided sample interactions for thin-film lithium niobate are not well explored. Compared to other integrated platforms, lithium niobate's high refractive index, birefringence, and angled sidewalls present unique design challenges for evanescent wave sensing. Here, we compare the performance of the quasi-transverse-electric (TE) and the quasi-transverse-magnetic (TM) mode for sensing on a thin-film lithium niobate rib waveguide with a 5 mM dye-doped polymer cladding pumped at 406 nm. We determine that both modes have propagation losses dominated by scatter, and that the absorption due to the sample only accounts for 3% of the measured losses for both modes. The TM mode has better overlap with the sample than the TE mode, but the TM mode also has a stronger propagation loss due to sidewall and sample induced scattering (32.5 $\pm$ 0.3 dB/cm) compared to the TE mode (23.0 $\pm$ 0.2 dB/cm). The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for on-chip lithium niobate-based sensor designs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Boes, L. Chang, C. Langrock, et al., “Lithium niobate photonics: Unlocking the electromagnetic spectrum,” \JournalTitleScience 379, eabj4396 (2023).
  2. D. Zhu, L. Shao, M. Yu, et al., “Integrated photonics on thin-film lithium niobate,” \JournalTitleAdv. Opt. Photon. 13, 242 (2021).
  3. M. Jankowski, C. Langrock, B. Desiatov, et al., “Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides,” \JournalTitleOptica 7, 40 (2020).
  4. L. Ledezma, R. Sekine, Q. Guo, et al., “Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides,” \JournalTitleOptica 9, 303 (2022).
  5. J. Lu, A. A. Sayem, Z. Gong, et al., “Ultralow-threshold thin-film lithium niobate optical parametric oscillator,” \JournalTitleOptica 8, 539–544 (2021).
  6. A. Y. Hwang, H. S. Stokowski, T. Park, et al., “Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator,” \JournalTitleOptica 10, 1535–1542 (2023).
  7. G.-T. Xue, Y.-F. Niu, X. Liu, et al., “Ultrabright Multiplexed Energy-Time-Entangled Photon Generation from Lithium Niobate on Insulator Chip,” \JournalTitlePhysical Review Applied 15, 064059 (2021).
  8. N. A. Harper, E. Y. Hwang, R. Sekine, et al., “Highly efficient visible and near-ir photon pair generation with thin-film lithium niobate,” \JournalTitleOptica Quantum 2, 103–109 (2024).
  9. E. Hwang, N. Harper, R. Sekine, et al., “Tunable and efficient ultraviolet generation with periodically poled lithium niobate,” \JournalTitleOptics Letters 48, 3917 (2023).
  10. J. Mishra, T. P. McKenna, E. Ng, et al., “Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire,” \JournalTitleOptica 8, 921 (2021).
  11. M. Zhang, B. Buscaino, C. Wang, et al., “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” \JournalTitleNature 568, 373–377 (2019).
  12. M. Yu, D. Barton III, R. Cheng, et al., “Integrated femtosecond pulse generator on thin-film lithium niobate,” \JournalTitleNature 612, 252–258 (2022).
  13. Q. Guo, B. K. Gutierrez, R. Sekine, et al., “Ultrafast mode-locked laser in nanophotonic lithium niobate,” \JournalTitleScience 382, 708–713 (2023).
  14. T.-H. Wu, L. Ledezma, C. Fredrick, et al., “Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides,” \JournalTitleNature Photonics 18, 218–223 (2024).
  15. D. Pohl, M. Reig Escalé, M. Madi, et al., “An integrated broadband spectrometer on thin-film lithium niobate,” \JournalTitleNature Photonics 14, 24–29 (2020).
  16. A. Shams-Ansari, M. Yu, Z. Chen, et al., “Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy,” \JournalTitleCommunications Physics 5, 88 (2022).
  17. A. A. Sayem, R. Cheng, S. Wang, and H. X. Tang, “Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors,” \JournalTitleApplied Physics Letters 116, 151102 (2020).
  18. P. Kozma, F. Kehl, E. Ehrentreich-Förster, et al., “Integrated planar optical waveguide interferometer biosensors: A comparative review,” \JournalTitleBiosensors and Bioelectronics 58, 287–307 (2014).
  19. E. Benito-Peña, M. G. Valdés, B. Glahn-Martínez, and M. C. Moreno-Bondi, “Fluorescence based fiber optic and planar waveguide biosensors. a review,” \JournalTitleAnalytica chimica acta 943, 17–40 (2016).
  20. P. A. Kocheril, K. D. Lenz, D. E. Jacobsen, and J. Z. Kubicek-Sutherland, “Amplification-free nucleic acid detection with a fluorescence-based waveguide biosensor,” \JournalTitleFrontiers in Sensors 3, 948466 (2022).
  21. Y. Wang, B. Tan, S. Liu, et al., “An optical fiber-waveguide-fiber platform for ppt level evanescent field-based sensing,” \JournalTitleSensors and Actuators B: Chemical 306, 127548 (2020).
  22. C. Lavers, K. Itoh, S. Wu, et al., “Planar optical waveguides for sensing applications,” \JournalTitleSensors and Actuators B: Chemical 69, 85–95 (2000).
  23. D. Yuan, Y. Dong, Y. Liu, and T. Li, “Mach-zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section,” \JournalTitleSensors 15, 21500–21517 (2015).
  24. M. Pi, C. Zheng, H. Zhao, et al., “Ultra-wideband mid-infrared chalcogenide suspended nanorib waveguide gas sensors with exceptionally high external confinement factor beyond free-space,” \JournalTitleACS nano 17, 17761–17770 (2023).
  25. D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” \JournalTitleOptica 5, 1046–1054 (2018).
  26. M. Vlk, A. Datta, S. Alberti, et al., “Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy,” \JournalTitleLight: Science & Applications 10, 26 (2021).
  27. M. Rowinska, S. Kelleher, F. Soberon, et al., “Fabrication and characterisation of spin coated oxidised pmma to provide a robust surface for on-chip assays,” \JournalTitleJournal of Materials Chemistry B 3, 135–143 (2015).
  28. G. Jones, W. Jackson, C. Choi, and W. Bergmark, “Solvent effects on emission yield and lifetime for coumarin laser-dyes - requirements for a rotatory decay mechanism,” \JournalTitleJournal of Physical Chemistry 89, 294–300 (1985).
  29. J. Donovalová, M. Cigáň, H. Stankovičová, et al., “Spectral properties of substituted coumarins in solution and polymer matrices,” \JournalTitleMolecules 17, 3259–3276 (2012).
  30. A. Shams-Ansari, G. Huang, L. He, et al., “Reduced material loss in thin-film lithium niobate waveguides,” \JournalTitleAPL Photonics 7, 081301 (2022).
  31. S. Y. Siew, E. J. H. Cheung, H. Liang, et al., “Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening,” \JournalTitleOptics Express 26, 4421 (2018).
  32. F. Kaufmann, G. Finco, A. Maeder, and R. Grange, “Redeposition-free inductively-coupled plasma etching of lithium niobate for integrated photonics,” \JournalTitleNanophotonics 12, 1601–1611 (2023).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: