Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Subgroups arising from connected components in the Morse boundary (2403.03939v1)

Published 6 Mar 2024 in math.GR

Abstract: We study connected components of the Morse boundary and their stabilisers. We introduce the notion of point-convergence and show that if the set of non-singleton connected components of the Morse boundary of a finitely generated group $G$ is point-convergent, then every non-singleton connected component is the (relative) Morse boundary of its stabiliser. The above property only depends on the topology of the Morse boundary and hence is invariant under quasi-isometry. This shows that the topology of the Morse boundary not only carries algebraic information but can be used to detect certain subgroups which in some sense are invariant under quasi-isometry.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.