Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Scaling of Two-Dimensional Polar Flocks (2403.03804v1)

Published 6 Mar 2024 in cond-mat.stat-mech and cond-mat.soft

Abstract: We propose a hydrodynamic description of the homogeneous ordered phase of polar flocks. Starting from symmetry principles, we construct the appropriate equation for the dynamics of the Goldstone mode associated with the broken rotational symmetry. We then focus on the two-dimensional case considering both "Malthusian flocks" for which the density field is a fast variable that does not enter the hydrodynamic description and "Vicsek flocks" for which it does. In both cases, we argue in favor of scaling relations that allow to compute exactly the scaling exponents, which are found in excellent agreement with previous simulations of the Vicsek model and with the numerical integration of our hydrodynamic equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: how birds fly together, Physical Review Letters 75, 4326 (1995).
  2. B. Mahault, F. Ginelli, and H. Chaté, Quantitative assessment of the Toner and Tu theory of polar flocks, Physical Review Letters 123, 218001 (2019), publisher: APS.
  3. H. Chaté, Dry aligning dilute active matter, Annual Review of Condensed Matter Physics 11, 189 (2020), publisher: Annual Reviews.
  4. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models, Physical Review Letters 17, 1133 (1966).
  5. P. Hohenberg, Existence of long-range order in one and two dimensions, Physical Review 158, 383 (1967).
  6. J. Toner, Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks, Physical Review E 86, 031918 (2012a).
  7. M. Besse, H. Chaté, and A. Solon, Metastability of Constant-Density Flocks, Physical Review Letters 129, 268003 (2022), publisher: APS.
  8. L. Chen, C. F. Lee, and J. Toner, Universality class for a nonequilibrium state of matter, Physical Review E 102, 022610 (2020a), publisher: APS.
  9. L. Di Carlo and M. Scandolo, Evidence of fluctuation-induced first-order phase transition in active matter, New Journal of Physics 24, 123032 (2022), publisher: IOP Publishing.
  10. Y. Tu, J. Toner, and M. Ulm, Sound waves and the absence of Galilean invariance in flocks, Physical review letters 80, 4819 (1998).
  11. N. Kyriakopoulos, F. Ginelli, and J. Toner, Leading birds by their beaks: the response of flocks to external perturbations, New Journal of Physics 18, 073039 (2016), publisher: IOP Publishing.
  12. The large crossover scale at small noise explains why we erroneously concluded before [10] that the scaling of fluctuations in Malthusian flocks were consistent with the predictions of Ref. [9].
  13. We could in principle complement Eq. (13) with a conserved noise term but it is always irrelevant compared to the non-conserved noise on θ𝜃\thetaitalic_θ.
  14. D. Geyer, A. Morin, and D. Bartolo, Sounds and hydrodynamics of polar active fluids, Nature materials 17, 789 (2018), publisher: Nature Publishing Group.
  15. H. Ikeda, How advection stabilize long-range order in two dimensions, arXiv preprint arXiv:2401.01603  (2024).
  16. P. Jentsch and C. F. Lee, A new universality class describes Vicsek’s flocking phase in physical dimensions, arXiv preprint arXiv:2402.01316  (2024).
  17. B. Delamotte, An introduction to the nonperturbative renormalization group (Springer, 2012) pp. 49–132.
  18. D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Physical Review A 16, 732 (1977).
  19. L. Canet, B. Delamotte, and N. Wschebor, Fully developed isotropic turbulence: Symmetries and exact identities, Physical Review E 91, 053004 (2015), publisher: APS.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: