The elementary theory of the 2-category of small categories (2403.03647v2)
Abstract: We give an elementary description of $2$-categories $\mathbf{Cat}\left(\mathcal{E}\right)$ of internal categories, functors and natural transformations, where $\mathcal{E}$ is a category modelling Lawvere's elementary theory of the category of sets (ETCS). This extends Bourke's characterisation of $2$-categories $\mathbf{Cat}\left(\mathcal{E}\right)$ where $\mathcal{E}$ has pullbacks to take account for the extra properties in ETCS, and Lawvere's characterisation of the (one dimensional) category of small categories to take account of the two-dimensional structure. Important two-dimensional concepts which we introduce include $2$-well-pointedness, full-subobject classifiers, and the categorified axiom of choice. Along the way, we show how generating families (resp. orthogonal factorisation systems) on $\mathcal{E}$ give rise to generating families (resp. orthogonal factorisation systems) on $\mathbf{Cat}\left(\mathcal{E}\right)_{1}$, results which we believe are of independent interest.
- Categories of sketched structures. Cahiers de topologie et geometrie differentielle, 13(2):104–214, 1972.
- Two-dimensional regularity and exactness. Journal of Pure and Applied Algebra, 218(7):1346–1371, 2014.
- Gabriella Böhm. The gray monoidal product of double categories. Applied Categorical Structures, 28(3):477–515, 2020.
- Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory, volume 1. Cambridge University Press, 1994.
- Aldridge K Bousfield. Constructions of factorization systems in categories. Journal of Pure and Applied Algebra, 9(2-3):207–220, 1977.
- John Bourke. Codescent objects in 2-dimensional universal algebra. PhD thesis, University of Sydney, 2010.
- Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra, 84(2):145–158, 1993.
- Brian Day. A reflection theorem for closed categories. Journal of pure and applied algebra, 2(1):1–11, 1972.
- Brian Day. On adjoint-functor factorisation. In Category Seminar: Proceedings Sydney Category Theory Seminar 1972/1973, pages 1–19. Springer, 2006.
- Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American Mathematical Society, 51(1):176–178, 1975.
- Charles Ehresmann. Catégories topologiques et catégories différentiables. Librairie universitaire, 1959.
- Charles Ehresmann. Catégories structurées. In Annales scientifiques de l’École Normale Supérieure, volume 80, pages 349–426, 1963.
- Model structures for homotopy of internal categories. Theory Appl. Categ, 15(3):66–94, 2005.
- Jonas Frey. Characterizing partitioned assemblies and realizability toposes. Journal of Pure and Applied Algebra, 223(5):2000–2014, 2019.
- Categories, allegories. Elsevier, 1990.
- Simplicial homotopy theory. Springer Science & Business Media, 2009.
- Alexander Grothendieck. Techniques de construction et théoremes d’existence en géométrie algébrique. iv. les schémas de hilbert. Séminaire Bourbaki, 6(221):249–276, 1960.
- 2222-categories of categories, discrete opfibration classifiers and the axiom of replacement. In preparation.
- Algebraic set theory, volume 220. Cambridge University Press, 1995.
- Peter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium, Volume 1. Oxford University Press, 2002.
- Peter T Johnstone. Topos theory. Courier Corporation, 2014.
- Strong stacks and classifying spaces. In Category Theory: Proceedings of the International Conference held in Como, Italy, July 22–28, 1990, pages 213–236. Springer, 2006.
- Algebraic theories in toposes. In Indexed Categories and Their Applications. Springer, 1978.
- 2-dimensional categories. Oxford University Press, USA, 2021.
- Anders Kock. Synthetic differential geometry, volume 333. Cambridge University Press, 2006.
- Stephen Lack. A 2-categories companion. In Towards higher categories, pages 105–191. Springer, 2009.
- Elaine Landry. Categories for the working philosopher. Oxford University Press, 2017.
- F William Lawvere. Alexander Grothendieck and the concept of space. Address, CT15 Aveiro 2016.
- F William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences, 50(5):869–872, 1963.
- F William Lawvere. An elementary theory of the category of sets. Proceedings of the national academy of sciences, 52(6):1506–1511, 1964.
- F William Lawvere. The category of categories as a foundation for mathematics. In Proceedings of the Conference on Categorical Algebra: La Jolla 1965, pages 1–20. Springer, 1966.
- Tom Leinster. Rethinking set theory. The American Mathematical Monthly, 121(5):403–415, 2014.
- An elementary theory of the category of sets (long version) with commentary. Reprints in Theory and Applications of Categories, 11:1–35, 2005.
- Jacob Lurie. Higher topos theory. Princeton University Press, 2009.
- Michael Makkai. Avoiding the axiom of choice in general category theory. Journal of pure and applied algebra, 108(2):109–173, 1996.
- Adrian Miranda. Internal categories. Master’s thesis, Macquarie University, 2018. Available at https://figshare.mq.edu.au/articles/thesis/Internal_categories/19434626/1.
- Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.
- Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media, 2012.
- nLab authors. fully formal ETCS. https://ncatlab.org/nlab/show/fully+formal+ETCS, December 2023. Revision 31.
- Gerhard Osius. Categorical set theory: a characterization of the category of sets. Journal of Pure and Applied Algebra, 4(1):79–119, 1974.
- A characterization of pie limits. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 110, pages 33–47. Cambridge University Press, 1991.
- David Michael Roberts. Ineternal categories, anafunctors and localisations. Theory and Applications of Categories, 26(29):788–829, 2012.
- Elements of ∞\infty∞-category theory, volume 194. Cambridge University Press, 2022.
- Raffael Stenzel. The (∞,2)2(\infty,2)( ∞ , 2 )-category of internal (∞,1)1(\infty,1)( ∞ , 1 )-categories, 2024.
- Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra, 8(2):149–181, 1976.
- Ross Street. Cosmoi of internal categories. Transactions of the American Mathematical Society, 258(2):271–318, 1980.
- Ross Street. Two-dimensional sheaf theory. Journal of Pure and Applied Algebra, 23(3):251–270, 1982.
- Ross Street. Elementary cosmoi i. In Category Seminar: Proceedings Sydney Category Theory Seminar 1972/1973, pages 134–180. Springer, 2006.
- Mark Weber. Yoneda structures from 2-toposes. Applied Categorical Structures, 15:259–323, 2007.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.