Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hermitian-preserving ansatz and variational open quantum eigensolver (2403.03478v2)

Published 6 Mar 2024 in quant-ph

Abstract: We propose a new variational quantum algorithm named Variational Open Quantum Eigensolver (VOQE) for solving steady states of open quantum systems described by either Lindblad master equations or non-Hermitian Hamiltonians. In VOQE, density matrices of mixed states are represented by pure states in doubled Hilbert space. We give a framework for building circuit ansatz which we call the Hermitian-preserving ansatz (HPA) to restrict the searching space. We also give a method to efficiently measure the operators' expectation values by post-selection measurements. We show the workflow of VOQE on solving steady states of the LMEs of the driven XXZ model and implement VOQE to solve the spectrum of the non-Hermitian Hamiltonians of the Ising spin chain in an imaginary field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
  2. A. Montanaro, Quantum algorithms: an overview, npj Quantum Information 2, 1 (2016).
  3. X.-D. Xie, Z.-Y. Xue, and D.-B. Zhang, Variational quantum eigensolvers for the non-hermitian systems by variance minimization, arXiv preprint arXiv:2305.19807  (2023).
  4. H. Zhao, P. Zhang, and T.-C. Wei, A universal variational quantum eigensolver for non-hermitian systems, Scientific Reports 13, 22313 (2023).
  5. J. Preskill, Lecture notes for physics 229: Quantum information and computation, California Institute of Technology 16, 1 (1998).
  6. A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the power of one qubit, Physical review letters 100, 050502 (2008).
  7. T. Prosen, Exact nonequilibrium steady state of a strongly driven open x x z chain, Physical review letters 107, 137201 (2011).
  8. O. A. Castro-Alvaredo and A. Fring, A spin chain model with non-hermitian interaction: the ising quantum spin chain in an imaginary field, Journal of Physics A: Mathematical and Theoretical 42, 465211 (2009).
  9. D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
  10. M. Mahdian and H. D. Yeganeh, Hybrid quantum variational algorithm for simulating open quantum systems with near-term devices, Journal of Physics A: Mathematical and Theoretical 53, 415301 (2020).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.