Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Burnett's conjecture in generalized wave coordinates (2403.03470v1)

Published 6 Mar 2024 in gr-qc and math.AP

Abstract: We prove Burnett's conjecture in general relativity when the metrics satisfy a generalized wave coordinate condition, i.e., suppose ${g_n}_{n=1}\infty$ is a sequence of Lorentzian metrics (in arbitrary dimensions $d \geq 3$) satisfying a generalized wave coordinate condition and such that $g_n\to g$ in a suitably weak and "high-frequency" manner, then the limit metric $g$ satisfies the Einstein--massless Vlasov system. Moreover, we show that the Vlasov field for the limiting metric can be taken to be a suitable microlocal defect measure corresponding to the convergence. The proof uses a compensation phenomenon based on the linear and nonlinear structure of the Einstein equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. G. Ali and J. K. Hunter. Large amplitude gravitational waves. J. Math. Phys., 40(6):3035–3052, 1999.
  2. G. A. Burnett. The high-frequency limit in general relativity. J. Math. Phys., 30(1):90–96, 1989.
  3. Y. Choquet-Bruhat. Construction de solutions radiatives approchées des équations d’Einstein. Comm. Math. Phys., 12:16–35, 1969.
  4. G. A. Francfort and F. Murat. Oscillations and energy densities in the wave equation. Comm. Partial Differential Equations, 17(11-12):1785–1865, 1992.
  5. G. A. Francfort. An introduction to H𝐻Hitalic_H-measures and their applications. In Variational problems in materials science, volume 68 of Progr. Nonlinear Differential Equations Appl., pages 85–110. Birkhäuser, Basel, 2006.
  6. P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761–1794, 1991.
  7. New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D, 83:084020, Apr 2011.
  8. Examples of backreaction of small-scale inhomogeneities in cosmology. Phys. Rev. D, 87:124037, Jun 2013.
  9. A. Guerra and R. Teixeira da Costa. Oscillations in wave map systems and homogenization of the Einstein equations in symmetry. arXiv:2107.00942, preprint, 2021.
  10. P. A. Hogan and T. Futamase. Some high-frequency spherical gravity waves. J. Math. Phys., 34(1):154–169, 1993.
  11. C. Huneau and J. Luk. High-frequency backreaction for the Einstein equations under polarized 𝕌⁢(1)𝕌1\mathbb{U}(1)blackboard_U ( 1 )-symmetry. Duke Math. J., 167(18):3315–3402, 2018.
  12. C. Huneau and J. Luk. Trilinear compensated compactness and Burnett’s conjecture in general relativity. arXiv:1907.10743, preprint, 2019.
  13. C. Huneau and J. Luk. High-frequency backreaction for the Einstein equations under 𝕌⁢(1)𝕌1\mathbb{U}(1)blackboard_U ( 1 ) symmetry: from Einstein–dust to Einstein–Vlasov. in preparation, 2024.
  14. C. Huneau and J. Luk. High-frequency solutions to the Einstein equations. preprint, 2024.
  15. A. D. Ionescu and B. Pausader. The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, volume 213 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2022.
  16. R. A. Isaacson. Gravitational radiation in the limit of high frequency. I. the linear approximation and geometrical optics. Phys. Rev., 166:1263–1271, Feb 1968.
  17. R. A. Isaacson. Gravitational radiation in the limit of high frequency. II. nonlinear terms and the effective stress tensor. Phys. Rev., 166:1272–1280, Feb 1968.
  18. B. Le Floch and P. G. LeFloch. On the global evolution of self-gravitating matter. Nonlinear interactions in Gowdy symmetry. Arch. Ration. Mech. Anal., 233(1):45–86, 2019.
  19. B. Le Floch and P. G. LeFloch. Compensated compactness and corrector stress tensor for the Einstein equations in 𝕋2superscript𝕋2\mathbb{T}^{2}blackboard_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT symmetry. Port. Math., 77(3-4):409–421, 2020.
  20. H. Lindblad and I. Rodnianski. The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris, 336(11):901–906, 2003.
  21. H. Lindblad and I. Rodnianski. The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 171(3):1401–1477, 2010.
  22. J. Lott. Backreaction in the future behavior of an expanding vacuum spacetime. Classical Quantum Gravity, 35(3):035010, 10, 2018.
  23. J. Lott. Collapsing in the Einstein flow. Ann. Henri Poincaré, 19(8):2245–2296, 2018.
  24. J. Lott. Corrigendum: Backreaction in the future behavior of an expanding vacuum spacetime (2018 class. quantum grav. 35 035010) [ MR3755966]. Classical Quantum Gravity, 35(8):089501, 1, 2018.
  25. J. Luk and I. Rodnianski. High-frequency limits and null dust shell solutions in general relativity. arXiv:2009.08968, preprint, 2020.
  26. The averaged Lagrangian and high-frequency gravitational waves. Comm. Math. Phys., 30:153–169, 1973.
  27. Gravitation. W. H. Freeman and Co., San Francisco, CA, 1973.
  28. W. Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
  29. E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
  30. Inhomogeneity effect in wainwright-marshman space-times. Phys. Rev. D, 89:044033, Feb 2014.
  31. Backreaction for Einstein-Rosen waves coupled to a massless scalar field. Phys. Rev. D, 94(2):024059, 12, 2016.
  32. L. Tartar. H𝐻Hitalic_H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115(3-4):193–230, 1990.
  33. A. Touati. Geometric optics approximation for the Einstein vacuum equations. Comm. Math. Phys., 402(3):3109–3200, 2023.
  34. A. Touati. High-Frequency Solutions to the Constraint Equations. Comm. Math. Phys., 402(1):97–140, 2023.
  35. A. Touati. The reverse Burnett conjecture for null dusts. arXiv:2402.17530, preprint, 2024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.