Burnett's conjecture in generalized wave coordinates (2403.03470v1)
Abstract: We prove Burnett's conjecture in general relativity when the metrics satisfy a generalized wave coordinate condition, i.e., suppose ${g_n}_{n=1}\infty$ is a sequence of Lorentzian metrics (in arbitrary dimensions $d \geq 3$) satisfying a generalized wave coordinate condition and such that $g_n\to g$ in a suitably weak and "high-frequency" manner, then the limit metric $g$ satisfies the Einstein--massless Vlasov system. Moreover, we show that the Vlasov field for the limiting metric can be taken to be a suitable microlocal defect measure corresponding to the convergence. The proof uses a compensation phenomenon based on the linear and nonlinear structure of the Einstein equations.
- G. Ali and J. K. Hunter. Large amplitude gravitational waves. J. Math. Phys., 40(6):3035–3052, 1999.
- G. A. Burnett. The high-frequency limit in general relativity. J. Math. Phys., 30(1):90–96, 1989.
- Y. Choquet-Bruhat. Construction de solutions radiatives approchées des équations d’Einstein. Comm. Math. Phys., 12:16–35, 1969.
- G. A. Francfort and F. Murat. Oscillations and energy densities in the wave equation. Comm. Partial Differential Equations, 17(11-12):1785–1865, 1992.
- G. A. Francfort. An introduction to H𝐻Hitalic_H-measures and their applications. In Variational problems in materials science, volume 68 of Progr. Nonlinear Differential Equations Appl., pages 85–110. Birkhäuser, Basel, 2006.
- P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761–1794, 1991.
- New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D, 83:084020, Apr 2011.
- Examples of backreaction of small-scale inhomogeneities in cosmology. Phys. Rev. D, 87:124037, Jun 2013.
- A. Guerra and R. Teixeira da Costa. Oscillations in wave map systems and homogenization of the Einstein equations in symmetry. arXiv:2107.00942, preprint, 2021.
- P. A. Hogan and T. Futamase. Some high-frequency spherical gravity waves. J. Math. Phys., 34(1):154–169, 1993.
- C. Huneau and J. Luk. High-frequency backreaction for the Einstein equations under polarized 𝕌(1)𝕌1\mathbb{U}(1)blackboard_U ( 1 )-symmetry. Duke Math. J., 167(18):3315–3402, 2018.
- C. Huneau and J. Luk. Trilinear compensated compactness and Burnett’s conjecture in general relativity. arXiv:1907.10743, preprint, 2019.
- C. Huneau and J. Luk. High-frequency backreaction for the Einstein equations under 𝕌(1)𝕌1\mathbb{U}(1)blackboard_U ( 1 ) symmetry: from Einstein–dust to Einstein–Vlasov. in preparation, 2024.
- C. Huneau and J. Luk. High-frequency solutions to the Einstein equations. preprint, 2024.
- A. D. Ionescu and B. Pausader. The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, volume 213 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2022.
- R. A. Isaacson. Gravitational radiation in the limit of high frequency. I. the linear approximation and geometrical optics. Phys. Rev., 166:1263–1271, Feb 1968.
- R. A. Isaacson. Gravitational radiation in the limit of high frequency. II. nonlinear terms and the effective stress tensor. Phys. Rev., 166:1272–1280, Feb 1968.
- B. Le Floch and P. G. LeFloch. On the global evolution of self-gravitating matter. Nonlinear interactions in Gowdy symmetry. Arch. Ration. Mech. Anal., 233(1):45–86, 2019.
- B. Le Floch and P. G. LeFloch. Compensated compactness and corrector stress tensor for the Einstein equations in 𝕋2superscript𝕋2\mathbb{T}^{2}blackboard_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT symmetry. Port. Math., 77(3-4):409–421, 2020.
- H. Lindblad and I. Rodnianski. The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris, 336(11):901–906, 2003.
- H. Lindblad and I. Rodnianski. The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 171(3):1401–1477, 2010.
- J. Lott. Backreaction in the future behavior of an expanding vacuum spacetime. Classical Quantum Gravity, 35(3):035010, 10, 2018.
- J. Lott. Collapsing in the Einstein flow. Ann. Henri Poincaré, 19(8):2245–2296, 2018.
- J. Lott. Corrigendum: Backreaction in the future behavior of an expanding vacuum spacetime (2018 class. quantum grav. 35 035010) [ MR3755966]. Classical Quantum Gravity, 35(8):089501, 1, 2018.
- J. Luk and I. Rodnianski. High-frequency limits and null dust shell solutions in general relativity. arXiv:2009.08968, preprint, 2020.
- The averaged Lagrangian and high-frequency gravitational waves. Comm. Math. Phys., 30:153–169, 1973.
- Gravitation. W. H. Freeman and Co., San Francisco, CA, 1973.
- W. Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
- E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
- Inhomogeneity effect in wainwright-marshman space-times. Phys. Rev. D, 89:044033, Feb 2014.
- Backreaction for Einstein-Rosen waves coupled to a massless scalar field. Phys. Rev. D, 94(2):024059, 12, 2016.
- L. Tartar. H𝐻Hitalic_H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115(3-4):193–230, 1990.
- A. Touati. Geometric optics approximation for the Einstein vacuum equations. Comm. Math. Phys., 402(3):3109–3200, 2023.
- A. Touati. High-Frequency Solutions to the Constraint Equations. Comm. Math. Phys., 402(1):97–140, 2023.
- A. Touati. The reverse Burnett conjecture for null dusts. arXiv:2402.17530, preprint, 2024.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.