Papers
Topics
Authors
Recent
Search
2000 character limit reached

Out of Time Order Correlation of the Hubbard Model with Random Local Disorder

Published 5 Mar 2024 in cond-mat.str-el and cond-mat.dis-nn | (2403.03214v1)

Abstract: The out of time order correlator (OTOC) serves as a powerful tool for investigating quantum information spreading and chaos in complex systems. We present a method employing non-equilibrium dynamical mean-field theory (DMFT) and coherent potential approximation (CPA) combined with diagrammatic perturbation on the Schwinger-Keldysh contour to calculate the OTOC for correlated fermionic systems subjected to both random disorder and electrons interaction. Our key finding is that random disorder enhances the OTOC decay in the Hubbard model for the metallic phase in the weak coupling limit. However, the current limitation of our perturbative solver restricts the applicability to weak interaction regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. H.-J. Stöckmann, “Quantum chaos: an introduction,”  (2000).
  2. M. C. Gutzwiller, Scientific American 266, 78 (1992).
  3. F. Haake, Quantum signatures of chaos (Springer, 1991).
  4. M. V. Berry and M. Tabor, Proc. R. Soc. A 356, 375 (1977).
  5. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979).
  6. D. A. Trunin, Physics-Uspekhi 64, 219 (2021).
  7. A. I. Larkin and Y. N. Ovchinnikov, Sov Phys JETP 28, 1200 (1969).
  8. D. A. Roberts and D. Stanford, Phys. Rev. Lett. 115, 131603 (2015).
  9. S. H. Shenker and D. Stanford, J. High Energy Phys. 2014, 1 (2014).
  10. J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016).
  11. A. Kitaev, Entanglement in Strongly-Correlated Quantum Matter .
  12. N. Tsuji and P. Werner, Phys. Rev. B 99, 115132 (2019).
  13. J. K. Freericks, arXiv preprint arXiv:1907.11302  (2019).
  14. J. K. Freericks, Phys. Rev. B 77 (2008), 10.1103/physrevb.77.075109.
  15. J. Yan and P. Werner, Phys. Rev. B 108 (2023), 10.1103/physrevb.108.125143.
  16. Y. Liao and V. Galitski, Phys. Rev. B 98, 205124 (2018).
  17. B. Swingle and D. Chowdhury, Phys. Rev. B 95, 060201 (2017).
  18. R.-Q. He and Z.-Y. Lu, Phys. Rev. B 95, 054201 (2017).
  19. Y. Chen, arXiv preprint arXiv:1608.02765  (2016).
  20. H. A. Bethe, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 150, 552 (1935).
  21. J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003).
  22. M. Eckstein and P. Werner, Phys. Rev. Lett. 107, 186406 (2011).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 18 likes about this paper.