Realistic photon-number resolution in Gaussian boson sampling (2403.03184v2)
Abstract: Gaussian boson sampling (GBS) is a model of nonuniversal quantum computation that claims to demonstrate quantum supremacy with current technologies. This model entails sampling photocounting events from a multimode Gaussian state at the outputs of a linear interferometer. In this scheme, collision events -- those with more than one photon for each mode -- are infrequent. However, they are still used for validation purposes. Therefore, the limitation of realistic detectors to perfectly resolve adjacent photon numbers becomes pivotal. We derive a the photocounting probability distribution in GBS schemes which is applicable for use with general detectors and photocounting techniques. This probability distribution is expressed in terms of functionals of the field-quadrature covariance matrix, e.g., Hafnian and Torontonian in the well-known special cases of photon-number resolving and on-off detectors, respectively. Based on our results, we consider a GBS validation technique involving detectors with realistic photon-number resolution.
- S. Aaronson and A. Arkhipov, The Computational Complexity of Linear Optics, Theory Comput. 9, 143 (2013).
- P. Clifford and R. Clifford, The Classical Complexity of Boson Sampling (2017), arXiv:1706.01260 [cs.DS] .
- N. Quesada and J. M. Arrazola, Exact simulation of Gaussian Boson Sampling in polynomial space and exponential time, Phys. Rev. Res. 2, 023005 (2020).
- A. S. Popova and A. Rubtsov, Cracking the quantum advantage threshold for Gaussian Boson Sampling, in Quantum 2.0 Conference and Exhibition (Optica Publishing Group, 2022) p. QW2A.15.
- D. Cilluffo, N. Lorenzoni, and M. B. Plenio, Simulating Gaussian Boson Sampling with tensor networks in the heisenberg picture (2023), arXiv:2305.11215 [quant-ph] .
- J. J. Renema, Simulability of partially distinguishable superposition and Gaussian Boson Sampling, Phys. Rev. A 101, 063840 (2020).
- J. Shi and T. Byrnes, Gaussian Boson Sampling with partial distinguishability (2021), arXiv:2105.09583 [quant-ph] .
- M. Oszmaniec and D. J. Brod, Classical simulation of photonic linear optics with lost particles, New J. Phys. 20, 092002 (2018).
- R. GarcÃa-Patrón, J. J. Renema, and V. Shchesnovich, Simulating Boson Sampling in lossy architectures, Quantum 3, 169 (2019).
- D. J. Brod and M. Oszmaniec, Classical simulation of linear optics subject to nonuniform losses, Quantum 4, 267 (2020).
- S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Sufficient conditions for efficient classical simulation of quantum optics, Phys. Rev. X 6, 021039 (2016).
- N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian Boson Sampling using threshold detectors, Phys. Rev. A 98, 062322 (2018).
- J. Sperling, W. Vogel, and G. S. Agarwal, True photocounting statistics of multiple on-off detectors, Phys. Rev. A 85, 023820 (2012).
- L. M. Ricciardi and F. Esposito, On some distribution functions for non-linear switching elements with finite dead time, Kybernetik 3, 148 (1966).
- J. W. Müller, Dead-time problems, Nucl. Instrum. Methods 112, 47 (1973).
- J. W. Müller, Some formulae for a dead-time-distorted poisson process: To André Allisy on the completion of his first half century, Nucl. Instrum. Methods 117, 401 (1974).
- B. I. Cantor and M. C. Teich, Dead-time-corrected photocounting distributions for laser radiation∗∗\ast∗, J. Opt. Soc. Am. 65, 786 (1975).
- M. C. Teich, L. Matin, and B. I. Cantor, Refractoriness in the maintained discharge of the cat’s retinal ganglion cell, J. Opt. Soc. Am. 68, 386 (1978).
- G. Vannucci and M. C. Teich, Effects of rate variation on the counting statistics of dead-time-modified Poisson processes, Opt. Commun. 25, 267 (1978).
- L. You, Superconducting nanowire single-photon detectors for quantum information, Nanophotonics 9, 2673 (2020).
- A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, Quantum detection by current carrying superconducting film, Physica C Supercond. 351, 349 (2001).
- V. A. Uzunova and A. A. Semenov, Photocounting statistics of superconducting nanowire single-photon detectors, Phys. Rev. A 105, 063716 (2022).
- G. Bressanini, H. Kwon, and M. S. Kim, Gaussian Boson Sampling with click-counting detectors (2023), arXiv:2305.00853 [quant-ph] .
- J. M. Arrazola and T. R. Bromley, Using Gaussian Boson Sampling to find dense subgraphs, Phys. Rev. Lett. 121, 030503 (2018).
- J. M. Arrazola, T. R. Bromley, and P. Rebentrost, Quantum approximate optimization with Gaussian Boson Sampling, Phys. Rev. A 98, 012322 (2018).
- P. D. Drummond and C. W. Gardiner, Generalised P-representations in quantum optics, J. Phys. A: Math. and Gen. 13, 2353 (1980).
- P. D. Drummond, C. W. Gardiner, and D. F. Walls, Quasiprobability methods for nonlinear chemical and optical systems, Phys. Rev. A 24, 914 (1981).
- P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136, A316 (1964).
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
- A. S. Dellios, M. D. Reid, and P. D. Drummond, Simulating Gaussian Boson Sampling quantum computers (2023), arXiv:2308.00908 [quant-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.