Papers
Topics
Authors
Recent
2000 character limit reached

Realistic photon-number resolution in Gaussian boson sampling (2403.03184v2)

Published 5 Mar 2024 in quant-ph

Abstract: Gaussian boson sampling (GBS) is a model of nonuniversal quantum computation that claims to demonstrate quantum supremacy with current technologies. This model entails sampling photocounting events from a multimode Gaussian state at the outputs of a linear interferometer. In this scheme, collision events -- those with more than one photon for each mode -- are infrequent. However, they are still used for validation purposes. Therefore, the limitation of realistic detectors to perfectly resolve adjacent photon numbers becomes pivotal. We derive a the photocounting probability distribution in GBS schemes which is applicable for use with general detectors and photocounting techniques. This probability distribution is expressed in terms of functionals of the field-quadrature covariance matrix, e.g., Hafnian and Torontonian in the well-known special cases of photon-number resolving and on-off detectors, respectively. Based on our results, we consider a GBS validation technique involving detectors with realistic photon-number resolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. S. Aaronson and A. Arkhipov, The Computational Complexity of Linear Optics, Theory Comput. 9, 143 (2013).
  2. P. Clifford and R. Clifford, The Classical Complexity of Boson Sampling (2017), arXiv:1706.01260 [cs.DS] .
  3. N. Quesada and J. M. Arrazola, Exact simulation of Gaussian Boson Sampling in polynomial space and exponential time, Phys. Rev. Res. 2, 023005 (2020).
  4. A. S. Popova and A. Rubtsov, Cracking the quantum advantage threshold for Gaussian Boson Sampling, in Quantum 2.0 Conference and Exhibition (Optica Publishing Group, 2022) p. QW2A.15.
  5. D. Cilluffo, N. Lorenzoni, and M. B. Plenio, Simulating Gaussian Boson Sampling with tensor networks in the heisenberg picture (2023), arXiv:2305.11215 [quant-ph] .
  6. J. J. Renema, Simulability of partially distinguishable superposition and Gaussian Boson Sampling, Phys. Rev. A 101, 063840 (2020).
  7. J. Shi and T. Byrnes, Gaussian Boson Sampling with partial distinguishability (2021), arXiv:2105.09583 [quant-ph] .
  8. M. Oszmaniec and D. J. Brod, Classical simulation of photonic linear optics with lost particles, New J. Phys. 20, 092002 (2018).
  9. R. García-Patrón, J. J. Renema, and V. Shchesnovich, Simulating Boson Sampling in lossy architectures, Quantum 3, 169 (2019).
  10. D. J. Brod and M. Oszmaniec, Classical simulation of linear optics subject to nonuniform losses, Quantum 4, 267 (2020).
  11. S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Sufficient conditions for efficient classical simulation of quantum optics, Phys. Rev. X 6, 021039 (2016).
  12. N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian Boson Sampling using threshold detectors, Phys. Rev. A 98, 062322 (2018).
  13. J. Sperling, W. Vogel, and G. S. Agarwal, True photocounting statistics of multiple on-off detectors, Phys. Rev. A 85, 023820 (2012).
  14. L. M. Ricciardi and F. Esposito, On some distribution functions for non-linear switching elements with finite dead time, Kybernetik 3, 148 (1966).
  15. J. W. Müller, Dead-time problems, Nucl. Instrum. Methods 112, 47 (1973).
  16. J. W. Müller, Some formulae for a dead-time-distorted poisson process: To André Allisy on the completion of his first half century, Nucl. Instrum. Methods 117, 401 (1974).
  17. B. I. Cantor and M. C. Teich, Dead-time-corrected photocounting distributions for laser radiation∗∗\ast∗, J. Opt. Soc. Am. 65, 786 (1975).
  18. M. C. Teich, L. Matin, and B. I. Cantor, Refractoriness in the maintained discharge of the cat’s retinal ganglion cell, J. Opt. Soc. Am. 68, 386 (1978).
  19. G. Vannucci and M. C. Teich, Effects of rate variation on the counting statistics of dead-time-modified Poisson processes, Opt. Commun. 25, 267 (1978).
  20. L. You, Superconducting nanowire single-photon detectors for quantum information, Nanophotonics 9, 2673 (2020).
  21. A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, Quantum detection by current carrying superconducting film, Physica C Supercond. 351, 349 (2001).
  22. V. A. Uzunova and A. A. Semenov, Photocounting statistics of superconducting nanowire single-photon detectors, Phys. Rev. A 105, 063716 (2022).
  23. G. Bressanini, H. Kwon, and M. S. Kim, Gaussian Boson Sampling with click-counting detectors (2023), arXiv:2305.00853 [quant-ph] .
  24. J. M. Arrazola and T. R. Bromley, Using Gaussian Boson Sampling to find dense subgraphs, Phys. Rev. Lett. 121, 030503 (2018).
  25. J. M. Arrazola, T. R. Bromley, and P. Rebentrost, Quantum approximate optimization with Gaussian Boson Sampling, Phys. Rev. A 98, 012322 (2018).
  26. P. D. Drummond and C. W. Gardiner, Generalised P-representations in quantum optics, J. Phys. A: Math. and Gen. 13, 2353 (1980).
  27. P. D. Drummond, C. W. Gardiner, and D. F. Walls, Quasiprobability methods for nonlinear chemical and optical systems, Phys. Rev. A 24, 914 (1981).
  28. P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136, A316 (1964).
  29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  30. A. S. Dellios, M. D. Reid, and P. D. Drummond, Simulating Gaussian Boson Sampling quantum computers (2023), arXiv:2308.00908 [quant-ph] .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.