Resonant history of gravitational atoms in black hole binaries (2403.03147v3)
Abstract: Rotating black holes can produce superradiant clouds of ultralight bosons. When the black hole is part of a binary system, its cloud can undergo resonances and ionization. These processes leave a distinct signature on the gravitational waveform that depends on the cloud's properties. To determine the state of the cloud by the time the system enters the band of future millihertz detectors, we study the chronological sequence of resonances encountered during the inspiral. For the first time, we consistently take into account the nonlinearities induced by the orbital backreaction and we allow the orbit to have generic eccentricity and inclination. We find that the resonance phenomenology exhibits striking new features. Resonances can "start" or "break" above critical thresholds of the parameters, which we compute analytically, and induce dramatic changes in eccentricity and inclination. Applying these results to realistic systems, we find two possible outcomes. If the binary and the cloud are sufficiently close to counter-rotating, the cloud survives in its original state until the system enters in band; otherwise, the cloud is destroyed during a resonance at large separations, but leaves an imprint on the eccentricity and inclination. In both scenarios, we characterize the observational signatures, with particular focus on future gravitational wave detectors.
- E. Barausse, V. Cardoso, and P. Pani, “Can environmental effects spoil precision gravitational-wave astrophysics?”, Phys. Rev. D 89 no. 10, (2014) 104059, arXiv:1404.7149 [gr-qc].
- G. Caneva Santoro, S. Roy, R. Vicente, M. Haney, O. J. Piccinni, W. Del Pozzo, and M. Martinez, “First constraints on compact binary environments from LIGO-Virgo data”, arXiv:2309.05061 [gr-qc].
- LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna”, arXiv:1702.00786 [astro-ph.IM].
- J. Baker et al., “The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky”, arXiv:1907.06482 [astro-ph.IM].
- M. Maggiore et al., “Science Case for the Einstein Telescope”, JCAP 03 (2020) 050, arXiv:1912.02622 [astro-ph.CO].
- E. Barausse and L. Rezzolla, “The Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals”, Phys. Rev. D 77 (2008) 104027, arXiv:0711.4558 [gr-qc].
- L. Speri, A. Antonelli, L. Sberna, S. Babak, E. Barausse, J. R. Gair, and M. L. Katz, “Probing Accretion Physics with Gravitational Waves”, Phys. Rev. X 13 no. 2, (2023) 021035, arXiv:2207.10086 [gr-qc].
- K. Eda, Y. Itoh, S. Kuroyanagi, and J. Silk, “New Probe of Dark-Matter Properties: Gravitational Waves from an Intermediate-Mass Black Hole Embedded in a Dark-Matter Minispike”, Phys. Rev. Lett. 110 no. 22, (2013) 221101, arXiv:1301.5971 [gr-qc].
- B. J. Kavanagh, D. A. Nichols, G. Bertone, and D. Gaggero, “Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform”, Phys. Rev. D 102 no. 8, (2020) 083006, arXiv:2002.12811 [gr-qc].
- P. S. Cole, G. Bertone, A. Coogan, D. Gaggero, T. Karydas, B. J. Kavanagh, T. F. M. Spieksma, and G. M. Tomaselli, “Distinguishing environmental effects on binary black hole gravitational waveforms”, Nature Astron. 7 no. 8, (2023) 943–950, arXiv:2211.01362 [gr-qc].
- N. Becker and L. Sagunski, “Comparing accretion disks and dark matter spikes in intermediate mass ratio inspirals”, Phys. Rev. D 107 no. 8, (2023) 083003, arXiv:2211.05145 [gr-qc].
- T. K. Karydas, B. J. Kavanagh, and G. Bertone, “Sharpening the dark matter signature in gravitational waveforms I: Accretion and eccentricity evolution”, arXiv:2402.13053 [gr-qc].
- B. J. Kavanagh, T. K. Karydas, G. Bertone, P. Di Cintio, and M. Pasquato, “Sharpening the dark matter signature in gravitational waveforms II: Numerical simulations with the NbodyIMRI code”, arXiv:2402.13762 [gr-qc].
- M. Garg, A. Derdzinski, S. Tiwari, J. Gair, and L. Mayer, “Measuring eccentricity and gas-induced perturbation from gravitational waves of LISA massive black hole binaries”, arXiv:2402.14058 [astro-ph.GA].
- J. Bamber, J. C. Aurrekoetxea, K. Clough, and P. G. Ferreira, “Black hole merger simulations in wave dark matter environments”, Phys. Rev. D 107 no. 2, (2023) 024035, arXiv:2210.09254 [gr-qc].
- J. C. Aurrekoetxea, K. Clough, J. Bamber, and P. G. Ferreira, “The effect of wave dark matter on equal mass black hole mergers”, arXiv:2311.18156 [gr-qc].
- S. Weinberg, “A New Light Boson?”, Phys. Rev. Lett. 40 (1978) 223–226.
- F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons”, Phys. Rev. Lett. 40 (1978) 279–282.
- R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons”, Phys. Rev. Lett. 38 (1977) 1440–1443.
- A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String Axiverse”, Phys. Rev. D 81 (2010) 123530, arXiv:0905.4720 [hep-th].
- P. Svrcek and E. Witten, “Axions In String Theory”, JHEP 06 (2006) 051, arXiv:hep-th/0605206.
- L. Bergstrom, “Dark Matter Candidates”, New J. Phys. 11 (2009) 105006, arXiv:0903.4849 [hep-ph].
- D. J. E. Marsh, “Axion Cosmology”, Phys. Rept. 643 (2016) 1–79, arXiv:1510.07633 [astro-ph.CO].
- L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, “Ultralight scalars as cosmological dark matter”, Phys. Rev. D 95 no. 4, (2017) 043541, arXiv:1610.08297 [astro-ph.CO].
- E. G. M. Ferreira, “Ultra-light dark matter”, Astron. Astrophys. Rev. 29 no. 1, (2021) 7, arXiv:2005.03254 [astro-ph.CO].
- Y. B. Zel’Dovich, “Generation of Waves by a Rotating Body”, Soviet Journal of Experimental and Theoretical Physics Letters 14 (1971) 180.
- Y. B. Zel’Dovich, “Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body”, Soviet Journal of Experimental and Theoretical Physics 35 (1972) 1085.
- A. A. Starobinsky, “Amplification of waves reflected from a rotating “black hole” ”, Sov. Phys. JETP 37 no. 1, (1973) 28–32.
- R. Brito, V. Cardoso, and P. Pani, “Superradiance: New Frontiers in Black Hole Physics”, Lect. Notes Phys. 906 (2015) pp.1–237, arXiv:1501.06570 [gr-qc].
- J. Zhang and H. Yang, “Gravitational floating orbits around hairy black holes”, Phys. Rev. D 99 no. 6, (2019) 064018, arXiv:1808.02905 [gr-qc].
- D. Baumann, H. S. Chia, and R. A. Porto, “Probing Ultralight Bosons with Binary Black Holes”, Phys. Rev. D 99 no. 4, (2019) 044001, arXiv:1804.03208 [gr-qc].
- J. Zhang and H. Yang, “Dynamic Signatures of Black Hole Binaries with Superradiant Clouds”, Phys. Rev. D 101 no. 4, (2020) 043020, arXiv:1907.13582 [gr-qc].
- D. Baumann, H. S. Chia, R. A. Porto, and J. Stout, “Gravitational Collider Physics”, Phys. Rev. D 101 no. 8, (2020) 083019, arXiv:1912.04932 [gr-qc].
- D. Baumann, G. Bertone, J. Stout, and G. M. Tomaselli, “Ionization of gravitational atoms”, Phys. Rev. D 105 no. 11, (2022) 115036, arXiv:2112.14777 [gr-qc].
- D. Baumann, G. Bertone, J. Stout, and G. M. Tomaselli, “Sharp Signals of Boson Clouds in Black Hole Binary Inspirals”, Phys. Rev. Lett. 128 no. 22, (2022) 221102, arXiv:2206.01212 [gr-qc].
- G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, “Dynamical friction in gravitational atoms”, JCAP 07 (2023) 070, arXiv:2305.15460 [gr-qc].
- R. Brito and S. Shah, “Extreme mass-ratio inspirals into black holes surrounded by scalar clouds”, Phys. Rev. D 108 no. 8, (2023) 084019, arXiv:2307.16093 [gr-qc].
- F. Duque, C. F. B. Macedo, R. Vicente, and V. Cardoso, “Axion Weak Leaks: extreme mass-ratio inspirals in ultra-light dark matter”, arXiv:2312.06767 [gr-qc].
- T. Takahashi and T. Tanaka, “Axion clouds may survive the perturbative tidal interaction over the early inspiral phase of black hole binaries”, JCAP 10 (2021) 031, arXiv:2106.08836 [gr-qc].
- Q. Ding, X. Tong, and Y. Wang, “Gravitational Collider Physics via Pulsar-Black Hole Binaries”, Astrophys. J. 908 no. 1, (2021) 78, arXiv:2009.11106 [astro-ph.HE].
- X. Tong, Y. Wang, and H.-Y. Zhu, “Gravitational Collider Physics via Pulsar–Black Hole Binaries II: Fine and Hyperfine Structures Are Favored”, Astrophys. J. 924 no. 2, (2022) 99, arXiv:2106.13484 [astro-ph.HE].
- P. Du, D. Egana-Ugrinovic, R. Essig, G. Fragione, and R. Perna, “Searching for ultra-light bosons and constraining black hole spin distributions with stellar tidal disruption events”, Nature Commun. 13 no. 1, (2022) 4626, arXiv:2202.01215 [hep-ph].
- T. Takahashi, H. Omiya, and T. Tanaka, “Evolution of binary systems accompanying axion clouds in extreme mass ratio inspirals”, Phys. Rev. D 107 no. 10, (2023) 103020, arXiv:2301.13213 [gr-qc].
- E. Berti, R. Brito, C. F. B. Macedo, G. Raposo, and J. L. Rosa, “Ultralight boson cloud depletion in binary systems”, Phys. Rev. D 99 no. 10, (2019) 104039, arXiv:1904.03131 [gr-qc].
- L. Hui, Y. T. A. Law, L. Santoni, G. Sun, G. M. Tomaselli, and E. Trincherini, “Black hole superradiance with dark matter accretion”, Phys. Rev. D 107 no. 10, (2023) 104018, arXiv:2208.06408 [gr-qc].
- C. A. R. Herdeiro, E. Radu, and N. M. Santos, “A bound on energy extraction (and hairiness) from superradiance”, Phys. Lett. B 824 (2022) 136835, arXiv:2111.03667 [gr-qc].
- W. E. East and F. Pretorius, “Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes”, Phys. Rev. Lett. 119 no. 4, (2017) 041101, arXiv:1704.04791 [gr-qc].
- D. Baumann, H. S. Chia, J. Stout, and L. ter Haar, “The Spectra of Gravitational Atoms”, JCAP 12 (2019) 006, arXiv:1908.10370 [gr-qc].
- C. Zener, “Non-Adiabatic Crossing of Energy Levels”, Proceedings of the Royal Society of London 137 no. 833, (1932) 696–702.
- L. Landau, “Zur Theorie der Energieübertragung”, Z. Sowjetunion 2 (1932) 46–51.
- E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York, 1959.
- P. C. Peters and J. Mathews, “Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev. 131 (1963) 435–439.
- P. C. Peters, “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev. 136 (1964) B1224–B1232.
- S. Detweiler, “Klein-gordon equation and rotating black holes”, Phys. Rev. D 22 (Nov, 1980) 2323–2326.
- E. W. Leaver, “An Analytic representation for the quasi normal modes of Kerr black holes”, Proc. Roy. Soc. Lond. A 402 (1985) 285–298.
- V. Cardoso and S. Yoshida, “Superradiant instabilities of rotating black branes and strings”, JHEP 07 (2005) 009, arXiv:hep-th/0502206.
- S. R. Dolan, “Instability of the massive Klein-Gordon field on the Kerr spacetime”, Phys. Rev. D 76 (2007) 084001, arXiv:0705.2880 [gr-qc].
- E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black branes”, Class. Quant. Grav. 26 (2009) 163001, arXiv:0905.2975 [gr-qc].
- P. Amaro-Seoane, “Relativistic dynamics and extreme mass ratio inspirals”, Living Rev. Rel. 21 (2018) 4, arXiv:1205.5240 [astro-ph.CO].
- LISA Collaboration, P. A. Seoane et al., “Astrophysics with the Laser Interferometer Space Antenna”, Living Rev. Rel. 26 no. 1, (2023) 2, arXiv:2203.06016 [gr-qc].
- N. C. Stone, B. D. Metzger, and Z. Haiman, “Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem”’, Mon. Not. Roy. Astron. Soc. 464 no. 1, (2017) 946–954, arXiv:1602.04226 [astro-ph.GA].
- I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, “Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei”, Astrophys. J. 835 no. 2, (2017) 165, arXiv:1602.03831 [astro-ph.HE].
- B. McKernan, K. E. S. Ford, J. Bellovary, N. W. C. Leigh, Z. Haiman, B. Kocsis, W. Lyra, M.-M. M. Low, B. Metzger, M. O’Dowd, S. Endlich, and D. J. Rosen, “Constraining stellar-mass black hole mergers in agn disks detectable with ligo”, The Astrophysical Journal 866 no. 1, (Oct, 2018) 66.
- Y. Levin, “Starbursts near supermassive black holes: young stars in the Galactic Center, and gravitational waves in LISA band”, Mon. Not. Roy. Astron. Soc. 374 (2007) 515–524, arXiv:astro-ph/0603583.
- X. Tong, Y. Wang, and H.-Y. Zhu, “Termination of superradiance from a binary companion”, Phys. Rev. D 106 no. 4, (2022) 043002, arXiv:2205.10527 [gr-qc].
- K. Fan, X. Tong, Y. Wang, and H.-Y. Zhu, “Modulating binary dynamics via the termination of black hole superradiance”, Phys. Rev. D 109 no. 2, (2024) 024059, arXiv:2311.17013 [gr-qc].
- J. Goodman and J. C. Tan, “Supermassive stars in quasar disks”, Astrophys. J. 608 (2004) 108–118, arXiv:astro-ph/0307361.
- J. Goodman, “Selfgravity and QSO disks”, Mon. Not. Roy. Astron. Soc. 339 (2003) 937, arXiv:astro-ph/0201001.
- S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and A. Klein, “Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals”, Phys. Rev. D 95 no. 10, (2017) 103012, arXiv:1703.09722 [gr-qc].
- P. Amaro-Seoane, C. F. Sopuerta, and M. D. Freitag, “The role of the supermassive black hole spin in the estimation of the EMRI event rate”, Mon. Not. Roy. Astron. Soc. 429 no. 4, (2013) 3155–3165, arXiv:1205.4713 [astro-ph.CO].
- M. C. Ferreira, C. F. B. Macedo, and V. Cardoso, “Orbital fingerprints of ultralight scalar fields around black holes”, Phys. Rev. D 96 no. 8, (2017) 083017, arXiv:1710.00830 [gr-qc].
- O. A. Hannuksela, K. W. K. Wong, R. Brito, E. Berti, and T. G. F. Li, “Probing the existence of ultralight bosons with a single gravitational-wave measurement”, Nature Astron. 3 no. 5, (2019) 447–451, arXiv:1804.09659 [astro-ph.HE].
- Y. Cao and Y. Tang, “Signatures of ultralight bosons in compact binary inspiral and outspiral”, Phys. Rev. D 108 no. 12, (2023) 123017, arXiv:2307.05181 [gr-qc].
- E. Cannizzaro, L. Sberna, S. R. Green, and S. Hollands, “Relativistic Perturbation Theory for Black-Hole Boson Clouds”, Phys. Rev. Lett. 132 no. 5, (2024) 051401, arXiv:2309.10021 [gr-qc].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.