Papers
Topics
Authors
Recent
2000 character limit reached

On a Neural Implementation of Brenier's Polar Factorization (2403.03071v4)

Published 5 Mar 2024 in stat.ML and cs.LG

Abstract: In 1991, Brenier proved a theorem that generalizes the polar decomposition for square matrices -- factored as PSD $\times$ unitary -- to any vector field $F:\mathbb{R}d\rightarrow \mathbb{R}d$. The theorem, known as the polar factorization theorem, states that any field $F$ can be recovered as the composition of the gradient of a convex function $u$ with a measure-preserving map $M$, namely $F=\nabla u \circ M$. We propose a practical implementation of this far-reaching theoretical result, and explore possible uses within machine learning. The theorem is closely related to optimal transport (OT) theory, and we borrow from recent advances in the field of neural optimal transport to parameterize the potential $u$ as an input convex neural network. The map $M$ can be either evaluated pointwise using $u*$, the convex conjugate of $u$, through the identity $M=\nabla u* \circ F$, or learned as an auxiliary network. Because $M$ is, in general, not injective, we consider the additional task of estimating the ill-posed inverse map that can approximate the pre-image measure $M{-1}$ using a stochastic generator. We illustrate possible applications of Brenier's polar factorization to non-convex optimization problems, as well as sampling of densities that are not log-concave.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 19 likes about this paper.