Three central limit theorems for the unbounded excursion component of a Gaussian field (2403.03033v2)
Abstract: For a smooth, stationary Gaussian field $f$ on Euclidean space with fast correlation decay, there is a critical level $\ell_c$ such that the excursion set ${f\geq\ell}$ contains a (unique) unbounded component if and only if $\ell<\ell_c$. We prove central limit theorems for the volume, surface area and Euler characteristic of this unbounded component restricted to a growing box. For planar fields, the results hold at all supercritical levels (i.e. all $\ell<\ell_c$). In higher dimensions the results hold at all sufficiently low levels (all $\ell<-\ell_c<\ell_c$) but could be extended to all supercritical levels by proving the decay of truncated connection probabilities. Our proof is based on the martingale central limit theorem.
- Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007.
- On the finiteness of the moments of the measure of level sets of random fields. Braz. J. Probab. Stat., 37(1):219–245, 2023.
- J.-M. Azaïs and M. Wschebor. Level sets and extrema of random processes and fields. John Wiley & Sons, Inc., Hoboken, NJ, 2009.
- V. Beffara and D. Gayet. Percolation of random nodal lines. Publ. Math. Inst. Hautes Études Sci., 126:131–176, 2017.
- D. Beliaev. Smooth Gaussian fields and percolation. Probab. Surv., 20:897–937, 2023.
- D. Beliaev and Z. Kereta. On the Bogomolny-Schmit conjecture. J. Phys. A, 46(45):455003, 5, 2013.
- Fluctuations of the number of excursion sets of planar Gaussian fields. Probab. Math. Phys., 3(1):105–144, 2022.
- A central limit theorem for the number of excursion set components of Gaussian fields. The Annals of Probability, 52(3):882 – 922, 2024.
- A covariance formula for the number of excursion set components of Gaussian fields and applications. Ann. Inst. Henri Poincaré Probab. Stat., 2024.
- M. V. Berry. Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A, 35(13):3025–3038, 2002.
- Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.
- N. Branco and C. J. Silva. Universality class for bootstrap percolation with m= 3 on the cubic lattice. International Journal of Modern Physics C, 10(05):921–930, 1999.
- V. Cammarota and D. Marinucci. A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Probab., 46(6):3188–3228, 2018.
- V. Cammarota and D. Marinucci. A reduction principle for the critical values of random spherical harmonics. Stochastic Process. Appl., 130(4):2433–2470, 2020.
- Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics. Proc. Amer. Math. Soc., 144(11):4759–4775, 2016.
- On the distribution of the critical values of random spherical harmonics. J. Geom. Anal., 26(4):3252–3324, 2016.
- C. Chaves and B. Koiller. Universality, thresholds and critical exponents in correlated percolation. Physica A: Statistical Mechanics and its Applications, 218(3-4):271–278, 1995.
- Bernoulli percolation above threshold: an invasion percolation analysis. Ann. Probab., 15(4):1272–1287, 1987.
- H. Duminil-Copin. Sixty years of percolation. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 2829–2856. World Sci. Publ., Hackensack, NJ, 2018.
- Existence of an unbounded nodal hypersurface for smooth Gaussian fields in dimension d≥3𝑑3d\geq 3italic_d ≥ 3. Ann. Probab., 51(1):228–276, 2023.
- A. Estrade and J. R. León. A central limit theorem for the Euler characteristic of a Gaussian excursion set. Ann. Probab., 44(6):3849–3878, 2016.
- L. Gass and M. Stecconi. The number of critical points of a gaussian field: finiteness of moments. arXiv preprint arXiv:2305.17586, 2023.
- The random geometry of equilibrium phases. In Phase transitions and critical phenomena, Vol. 18, volume 18 of Phase Transit. Crit. Phenom., pages 1–142. Academic Press, San Diego, CA, 2001.
- G. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.
- P. Hall and C. C. Heyde. Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.
- A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- S. R. Jain and R. Samajdar. Nodal portraits of quantum billiards: domains, lines, and statistics. Rev. Modern Phys., 89(4):045005, 66, 2017.
- S. Janson. Gaussian Hilbert spaces, volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997.
- O. Kallenberg. Foundations of modern probability, volume 99 of Probability Theory and Stochastic Modelling. Springer, Cham, [2021] ©2021. Third edition [of 1464694].
- H. Kesten and S. Lee. The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab., 6(2):495–527, 1996.
- H. Kesten and Y. Zhang. A central limit theorem for “critical” first-passage percolation in two dimensions. Probab. Theory Related Fields, 107(2):137–160, 1997.
- M. Kratz and S. Vadlamani. Central limit theorem for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields. J. Theoret. Probab., 31(3):1729–1758, 2018.
- On the universality of crossing probabilities in two-dimensional percolation. J. Statist. Phys., 67(3-4):553–574, 1992.
- S. Lee. The central limit theorem for Euclidean minimal spanning trees. I. Ann. Appl. Probab., 7(4):996–1020, 1997.
- Universal finite-size scaling functions for percolation on three-dimensional lattices. Phys. Rev. E, 58:1521–1527, Aug 1998.
- D. Marinucci and M. Rossi. Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on 𝕊dsuperscript𝕊𝑑\mathbb{S}^{d}blackboard_S start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. J. Funct. Anal., 268(8):2379–2420, 2015.
- D. Marinucci and I. Wigman. On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys., 52:093301, 2011.
- D. Marinucci and I. Wigman. On nonlinear functionals of random spherical eigenfunctions. Comm. Math. Phys., 327(3):849–872, 2014.
- S. Muirhead. Percolation of strongly correlated Gaussian fields II. Sharpness of the phase transition. to appear in Ann. Probab., 2024.
- The phase transition for planar Gaussian percolation models without FKG. to appear in Ann. Probab., 2023. With an appendix by L. Köhler-Schindler.
- S. Muirhead and F. Severo. Percolation of strongly correlated Gaussian fields I. Decay of subcritical connection probabilities. to appear in Prob. Math. Phys., 202.
- S. Muirhead and H. Vanneuville. The sharp phase transition for level set percolation of smooth planar Gaussian fields. Ann. Inst. Henri Poincaré Probab. Stat., 56(2):1358–1390, 2020.
- D. Müller. A central limit theorem for Lipschitz-Killing curvatures of Gaussian excursions. J. Math. Anal. Appl., 452(2):1040–1081, 2017.
- F. Nazarov and M. Sodin. Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. J. Math. Phys. Anal. Geom., 12(3):205–278, 2016.
- L. I. Nicolaescu. A CLT concerning critical points of random functions on a Euclidean space. Stochastic Process. Appl., 127(10):3412–3446, 2017.
- Nodal statistics of planar random waves. Comm. Math. Phys., 369(1):99–151, 2019.
- M. D. Penrose. A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab., 29(4):1515–1546, 2001.
- Unexpected topology of the temperature fluctuations in the cosmic microwave background. A&A, 627:A163, 2019.
- Gaussian processes for machine learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2006.
- A. Rivera. Talagrand’s inequality in planar Gaussian field percolation. Electron. J. Probab., 26:Paper No. 26, 25, 2021.
- M. Rossi. The geometry of spherical random fields. arXiv preprint arXiv:1603.07575, 2016.
- M. Sahimi. Applications of percolation theory, volume 213 of Applied Mathematical Sciences. Springer, Cham, second edition, 2023.
- F. Severo. Sharp phase transition for Gaussian percolation in all dimensions. Ann. H. Lebesgue, 5:987–1008, 2022.
- F. Severo. Uniqueness of Unbounded Component for Level Sets of Smooth Gaussian Fields. International Mathematics Research Notices, page rnad262, 11 2023.
- A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1):58–73, 1996.
- Y. Zhang. A martingale approach in the study of percolation clusters on the ℤdsuperscriptℤ𝑑\mathbb{Z}^{d}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT lattice. J. Theoret. Probab., 14(1):165–187, 2001.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.