Papers
Topics
Authors
Recent
2000 character limit reached

Refining the grading of irreducible Lie colour algebra representations (2403.02855v2)

Published 5 Mar 2024 in math-ph and math.MP

Abstract: We apply the loop module construction of arXiv:1504.05114 in the context of Lie colour algebras. We construct a bijection between the equivalence classes of all finite-dimensional graded irreducible Lie colour algebra representations from the irreducible representations for Lie superalgebras. This bijection is obtained by applying the loop module construction iteratively to simple groups in the Jordan--H\"older decomposition of the grading group. Restricting to simple groups in this way greatly simplifies the construction. Despite the bijection between Lie colour algebra representations and Lie superalgebra representations, Lie colour algebras maintain a non-trivial representation theory distinct from that of Lie superalgebras. We demonstrate the applicability of the loop module construction to Lie colour algebras in two examples: a Hilbert space for a quantum mechanical model and representations of a colour version of $ \mathfrak{sl}_2 $.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. doi:10.1016/0550-3213(78)90186-4.
  2. doi:10.1063/1.523552.
  3. doi:10.4153/CJM-1960-044-x.
  4. doi:10.1103/PhysRevD.18.385.
  5. doi:10.1007/978-4-431-55285-7_26.
  6. doi:10.1063/1.527566.
  7. doi:10.1063/1.531102.
  8. doi:10.1063/1.1383561.
  9. doi:10.1007/BF02877435.
  10. doi:10.1088/0253-6102/36/6/647.
  11. doi:10.48550/ARXIV.0912.1070.
  12. doi:10.1088/1742-6596/287/1/012037.
  13. doi:10.1134/S1547477114070449.
  14. doi:10.1088/1751-8121/aaae9a.
  15. doi:10.1088/1751-8121/abe2f2.
  16. doi:10.1088/1751-8121/ac17a5.
  17. doi:10.1093/ptep/ptw176.
  18. doi:10.1063/1.5118302.
  19. doi:10.1140/epjc/s10052-020-8242-x.
  20. doi:10.1016/j.nuclphysb.2021.115426.
  21. doi:10.1088/1751-8121/ab661c.
  22. doi:10.1063/1.5144325.
  23. doi:10.3842/SIGMA.2021.071.
  24. doi:10.1007/978-3-030-55777-5_18.
  25. doi:10.1016/j.nuclphysb.2021.115514.
  26. doi:10.1142/S0217732321502382.
  27. doi:10.1063/5.0100182.
  28. doi:10.1063/5.0050200.
  29. doi:10.1090/conm/483/09433.
  30. doi:10.1063/5.0149175. URL https://doi.org/10.1063/5.0149175
  31. doi:10.1063/1.525911.
  32. doi:10.1063/5.0037493.
  33. doi:10.4064/sm-117-2-195-203.
  34. doi:10.2991/jnmp.2006.13.s.13.
  35. doi:10.1063/1.4986570.
  36. doi:10.1063/1.524113.
  37. doi:10.1017/S0004972700034080.
  38. doi:10.1063/1.5138597.
  39. doi:10.1063/5.0163904. URL https://doi.org/10.1063/5.0163904
  40. doi:10.1016/0550-3213(81)90006-7.
  41. doi:10.1007/s10468-006-9027-0.
  42. doi:10.1007/978-1-4613-0041-0. URL https://doi.org/10.1007/978-1-4613-0041-0
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.