A Primal-dual hybrid gradient method for solving optimal control problems and the corresponding Hamilton-Jacobi PDEs (2403.02468v1)
Abstract: Optimal control problems are crucial in various domains, including path planning, robotics, and humanoid control, demonstrating their broad applicability. The connection between optimal control and Hamilton-Jacobi (HJ) partial differential equations (PDEs) underscores the need for solving HJ PDEs to address these control problems effectively. While numerous numerical methods exist for tackling HJ PDEs across different dimensions, this paper introduces an innovative optimization-based approach that reformulates optimal control problems and HJ PDEs into a saddle point problem using a Lagrange multiplier. Our method, based on the preconditioned primal-dual hybrid gradient (PDHG) method, offers a solution to HJ PDEs with first-order accuracy and numerical unconditional stability, enabling larger time steps and avoiding the limitations of explicit time discretization methods. Our approach has ability to handle a wide variety of Hamiltonian functions, including those that are non-smooth and dependent on time and space, through a simplified saddle point formulation that facilitates easy and parallelizable updates. Furthermore, our framework extends to viscous HJ PDEs and stochastic optimal control problems, showcasing its versatility. Through a series of numerical examples, we demonstrate the method's effectiveness in managing diverse Hamiltonians and achieving efficient parallel computation, highlighting its potential for wide-ranging applications in optimal control and beyond.
- Handbook of linear algebra 39 (2006)
- SIAM Journal on Control and Optimization 47(2), 817–848 (2008)
- SIAM Journal on Scientific Computing 41(4), A2384–A2406 (2019)
- SIAM Journal on Control and Optimization 55(5), 3091–3115 (2017)
- arXiv preprint arXiv:1812.05916 (2018)
- Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1997). DOI 10.1007/978-0-8176-4755-1. With appendices by Maurizio Falcone and Pierpaolo Soravia
- CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). DOI 10.1007/978-1-4419-9467-7. URL https://doi.org/10.1007/978-1-4419-9467-7. With a foreword by Hédy Attouch
- Bertsekas, D.P.: Reinforcement learning and optimal control. Athena Scientific, Belmont, Massachusetts (2019)
- Journal of Scientific Computing 55(3), 575–605 (2013)
- ESAIM: Proceedings and Surveys 65, 330–348 (2019)
- SIAM Journal on Control and Optimization 56(2), 801–836 (2018)
- Mathematics and Financial Economics 12, 335–363 (2018)
- Communications in Mathematical Sciences (2015)
- arXiv preprint arXiv:2303.16534 (2023)
- Journal of mathematical imaging and vision 40, 120–145 (2011)
- Journal of Guidance, Control, and Dynamics 40(6), 1360–1373 (2017). DOI 10.2514/1.G000774. URL https://doi.org/10.2514/1.G000774
- arXiv preprint arXiv:2110.02541 (2021)
- arXiv preprint arXiv:2109.14849 (2021)
- Journal of Scientific Computing 73, 617–643 (2017)
- Journal of Computational Physics 387, 376–409 (2019)
- In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 626–631 (2019)
- Darbon, J.: On convex finite-dimensional variational methods in imaging sciences and Hamilton–Jacobi equations. SIAM Journal on Imaging Sciences 8(4), 2268–2293 (2015). DOI 10.1137/130944163
- Mathematics of Control, Signals, and Systems 35(1), 1–44 (2023)
- arXiv preprint arXiv:2109.12222 (2021)
- Res. Math. Sci. 7(3), 20 (2020). DOI 10.1007/s40687-020-00215-6. URL https://doi.org/10.1007/s40687-020-00215-6
- SIAM Journal on Imaging Sciences 13(2), 971–1014 (2020). DOI 10.1137/19M1266332. URL https://doi.org/10.1137/19M1266332
- Journal of Computational Physics 425, 109907 (2021)
- Research in the Mathematical Sciences 3(1), 19 (2016). DOI 10.1186/s40687-016-0068-7
- Splitting Methods in Communication, Imaging, Science, and Engineering pp. 427–432 (2016)
- In: Air Traffic Management and Systems, pp. 205–247. Springer Japan, Tokyo (2014)
- In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 319–326 (2001)
- In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3034–3039 (2006). DOI 10.1109/CDC.2006.377184
- arXiv preprint arXiv:1908.01533 (2019)
- In: 2015 Proceedings of the Conference on Control and its Applications, pp. 368–375. SIAM (2015)
- Research in the Mathematical Sciences 6(1), 1–41 (2019)
- In: 2013 IEEE International Conference on Robotics and Automation, pp. 3136–3141 (2013). DOI 10.1109/ICRA.2013.6631013
- Journal of Field Robotics 32(2), 229–254 (2015)
- In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 120–127 (2014). DOI 10.1109/HUMANOIDS.2014.7041347
- IEEE Transactions on Robotics and Automation 14(1), 69–77 (1998). DOI 10.1109/70.660845
- SIAM Journal on Control and Optimization 38(3), 683–710 (2000). DOI 10.1137/S0363012998332433
- arXiv preprint arXiv:2303.08950 (2023)
- In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 456–462 (2007). DOI 10.1109/IROS.2007.4399327
- Journal of Scientific Computing 70(1), 1–28 (2017)
- In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 1054–1061. IEEE (2011)
- Dynamic Games and Applications 4, 110–154 (2014)
- Proceedings of the National Academy of Sciences 115(34), 8505–8510 (2018). DOI 10.1073/pnas.1718942115
- Springer-Verlag, Berlin (1993). Advanced theory and bundle methods
- In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2952–2957 (2016). DOI 10.1109/ICRA.2016.7487459
- In: 53rd IEEE Conference on Decision and Control, pp. 5880–5887. IEEE (2014)
- SIAM Journal on Scientific Computing 21(2), 666–690 (1999). DOI 10.1137/S1064827598337282
- arXiv preprint arXiv:1812.04300 (2018)
- arXiv preprint arXiv:1902.01599 (2019)
- SIAM Journal on Numerical Analysis 57(3), 1100–1123 (2019)
- arXiv preprint arXiv:1611.03158 (2016)
- SIAM Journal on Scientific Computing 21(6), 2126–2143 (2000). DOI 10.1137/S106482759732455X
- Neurocomputing 285, 23 – 34 (2018). DOI https://doi.org/10.1016/j.neucom.2018.01.002. URL http://www.sciencedirect.com/science/article/pii/S0925231218300158
- arXiv preprint arXiv:1905.06276 (2019)
- SIAM Journal on Scientific Computing 40(2), A629–A652 (2018)
- Computational Optimization and Applications 68(2), 289–315 (2017)
- Automatica 36(9), 1355 – 1364 (2000). DOI https://doi.org/10.1016/S0005-1098(00)00045-5. URL http://www.sciencedirect.com/science/article/pii/S0005109800000455
- In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 1583–1590. IEEE (2018)
- IEEE Control Systems Letters 2(2), 201–206 (2017)
- Automatica 100, 312–322 (2019)
- Autonomous robots 40(3), 429–455 (2016)
- SIAM Journal on Applied Dynamical Systems 3(4), 701–722 (2004)
- Transportation research part B: methodological 45(10), 1572–1589 (2011)
- arXiv preprint arXiv:1909.07960 (2019)
- Japanese journal of mathematics 2(1), 229–260 (2007)
- IEEE Transactions on Automatic Control (2022)
- IEEE Control Systems Letters 5(3), 1055–1060 (2021). DOI 10.1109/LCSYS.2020.3009933
- SIAM Journal on Applied Mathematics 81(1), 190–207 (2021). DOI 10.1137/20M1342690
- Control engineering. Marcel Dekker (2004). URL https://books.google.com/books?id=BDS\_PQAACAAJ
- arXiv preprint arXiv:1803.01215 (2018)
- Journal of Computational Physics 472, 111654 (2023)
- McEneaney, W.: Max-plus methods for nonlinear control and estimation. Springer Science & Business Media, Boston, MA (2006)
- McEneaney, W.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM Journal on Control and Optimization 46(4), 1239–1276 (2007). DOI 10.1137/040610830
- In: 2008 American Control Conference, pp. 4684–4690. IEEE (2008)
- SIAM Journal on Control and Optimization 48(5), 3052–3079 (2009)
- arXiv preprint arXiv:2310.01605 (2023)
- In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6313–6318 (2006). DOI 10.1109/CDC.2006.377358
- SIAM Journal on Numerical Analysis 28(4), 907–922 (1991). DOI 10.1137/0728049
- SIAM Journal on Imaging Sciences 7(1), 212–238 (2014)
- In: CCC 2017 36th Chinese Control Conference, Control Conference (CCC), 2017 36th Chinese, pp. ISBN: 978–1–5386–2918–5. IEEE, Dalian, China (2017). DOI 10.23919/ChiCC.2017.8027369. URL https://hal-enac.archives-ouvertes.fr/hal-01340565
- arXiv preprint arXiv:1903.06652 (2019)
- arXiv preprint arXiv:1611.02739 (2016)
- IEEE Transactions on Aerospace and Electronic Systems 54(2), 834–847 (2018). DOI 10.1109/TAES.2017.2767958
- Journal of Computational Physics 375, 1339 – 1364 (2018). DOI 10.1016/j.jcp.2018.08.029
- Todorov, E.: Efficient computation of optimal actions. Proceedings of the national academy of sciences 106(28), 11478–11483 (2009)
- Valkonen, T.: A primal–dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Problems 30(5), 055012 (2014)
- Applied Mathematics & Optimization pp. 1–49 (2017)
- Springer-Verlag, New York (1999). DOI 10.1007/978-1-4612-1466-3. URL https://doi.org/10.1007/978-1-4612-1466-3. Hamiltonian systems and HJB equations
- SIAM Journal on Scientific Computing 43(6), A4043–A4066 (2021)
- arXiv preprint arXiv:2302.05816 (2023)