Asymptotically-Flat Black Hole Solutions in Symmergent Gravity
Abstract: Symmergent gravity is an emergent gravity model with an $R+R2$ curvature sector and an extended particle sector having new particles beyond the known ones. With constant scalar curvature, asymptotically flat black hole solutions are known to have no sensitivity to the quadratic curvature term (coefficient of $R2$). With variable scalar curvature, however, asymptotically-flat symmergent black hole solutions turn out to explicitly depend on the quadratic curvature term. In the present work, we construct asymptotically-flat symmergent black holes with variable scalar curvature and use its evaporation, shadow, and deflection angle to constrain the symmergent gravity parameters. Concerning their evaporation, we find that the new particles predicted by symmergent gravity, even if they do not interact with the known particles, can enhance the black hole evaporation rate. Concerning their shadow, we show that statistically significant symmergent effects are reached at the $2\,\sigma$ level for the observational data of the Event Horizon Telescope (EHT) on the Sagittarius A* supermassive black hole. Concerning their weak deflection angle, we reveal discernible features for the boson-fermion number differences, particularly at large impact parameters. These findings hold the potential to serve as theoretical predictions for future observations and investigations on black hole properties.
- Durmus Demir, “Gauge and Poincaré properties of the UV cutoff and UV completion in quantum field theory,” Phys. Rev. D 107, 105014 (2023), arXiv:2305.01671 [hep-th] .
- Durmus Demir, “Emergent Gravity as the Eraser of Anomalous Gauge Boson Masses, and QFT-GR Concord,” Gen. Rel. Grav. 53, 22 (2021a), arXiv:2101.12391 [gr-qc] .
- Durmus Demir, “Symmergent Gravity, Seesawic New Physics, and their Experimental Signatures,” Adv. High Energy Phys. 2019, 4652048 (2019), arXiv:1901.07244 [hep-ph] .
- Durmus Ali Demir, “Curvature-Restored Gauge Invariance and Ultraviolet Naturalness,” Adv. High Energy Phys. 2016, 6727805 (2016), arXiv:1605.00377 [hep-ph] .
- Philip W. Anderson, “Plasmons, Gauge Invariance, and Mass,” Phys. Rev. 130, 439–442 (1963).
- F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321–323 (1964).
- Peter W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13, 508–509 (1964).
- İlim İrfan Çimdiker, “Starobinsky inflation in emergent gravity,” Phys. Dark Univ. 30, 100736 (2020).
- İrfan Çimdiker, Durmuş Demir, and Ali Övgün, “Black hole shadow in symmergent gravity,” Phys. Dark Univ. 34, 100900 (2021), arXiv:2110.11904 [gr-qc] .
- Javlon Rayimbaev, Reggie C. Pantig, Ali Övgün, Ahmadjon Abdujabbarov, and Durmuş Demir, “Quasiperiodic oscillations, weak field lensing and shadow cast around black holes in Symmergent gravity,” Annals of Physics (2023), 10.1016/j.aop.2023.169335, arXiv:2206.06599 [gr-qc] .
- Reggie C. Pantig, Ali Övgün, and Durmuş Demir, “Testing symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the M87*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT and Sgr. A*superscriptA\hbox{A}^{*}A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT results,” Eur. Phys. J. C 83, 250 (2023), arXiv:2208.02969 [gr-qc] .
- Riasat Ali and Rimsha Babar and Zunaira Akhtar and Ali Övgün, “Thermodynamics and logarithmic corrections of symmergent black holes,” Results in Physics , 106300 (2023).
- J. L. Synge, “The Escape of Photons from Gravitationally Intense Stars,” Mon. Not. Roy. Astron. Soc. 131, 463–466 (1966).
- J. P. Luminet, “Image of a spherical black hole with thin accretion disk,” Astron. Astrophys. 75, 228–235 (1979).
- Heino Falcke, Fulvio Melia, and Eric Agol, “Viewing the shadow of the black hole at the galactic center,” Astrophys. J. Lett. 528, L13 (2000), arXiv:astro-ph/9912263 .
- Kazunori Akiyama et al. (Event Horizon Telescope), “First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring,” Astrophys. J. Lett. 875, L5 (2019), arXiv:1906.11242 [astro-ph.GA] .
- Kazunori Akiyama et al. (Event Horizon Telescope), “First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,” Astrophys. J. Lett. 930, L12 (2022).
- Sushant G. Ghosh, Rahul Kumar, and Shafqat Ul Islam, “Parameters estimation and strong gravitational lensing of nonsingular Kerr-Sen black holes,” JCAP 03, 056 (2021), arXiv:2011.08023 [gr-qc] .
- Alireza Allahyari, Mohsen Khodadi, Sunny Vagnozzi, and David F. Mota, “Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope,” JCAP 02, 003 (2020), arXiv:1912.08231 [gr-qc] .
- Cosimo Bambi, Katherine Freese, Sunny Vagnozzi, and Luca Visinelli, “Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image,” Phys. Rev. D 100, 044057 (2019), arXiv:1904.12983 [gr-qc] .
- Sunny Vagnozzi, Rittick Roy, Yu-Dai Tsai, Luca Visinelli, Misba Afrin, Alireza Allahyari, Parth Bambhaniya, Dipanjan Dey, Sushant G Ghosh, Pankaj S. Joshi, Kimet Jusufi, Mohsen Khodadi, Rahul Kumar Walia, Ali Övgün, and Cosimo Bambi, “Horizon-scale tests of gravity theories and fundamental physics from the event horizon telescope image of sagittarius a*,” Classical and Quantum Gravity (2023), arXiv:2205.07787 [gr-qc] .
- Prashant Kocherlakota, Luciano Rezzolla, Heino Falcke, et al. (EHT Collaboration), “Constraints on black-hole charges with the 2017 eht observations of m87*,” Phys. Rev. D 103, 104047 (2021a).
- Ali Övgün, İzzet Sakallı, and Joel Saavedra, “Shadow cast and Deflection angle of Kerr-Newman-Kasuya spacetime,” JCAP 10, 041 (2018), arXiv:1807.00388 [gr-qc] .
- Ali Övgün and İzzet Sakallı, “Testing generalized Einstein–Cartan–Kibble–Sciama gravity using weak deflection angle and shadow cast,” Class. Quant. Grav. 37, 225003 (2020), arXiv:2005.00982 [gr-qc] .
- Ali Övgün, İzzet Sakallı, Joel Saavedra, and Carlos Leiva, “Shadow cast of noncommutative black holes in Rastall gravity,” Mod. Phys. Lett. A 35, 2050163 (2020), arXiv:1906.05954 [hep-th] .
- Xiao-Mei Kuang and Ali Övgün, “Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole,” (2022), arXiv:2205.11003 [gr-qc] .
- Yashmitha Kumaran and Ali Övgün, “Deflection Angle and Shadow of the Reissner–Nordström Black Hole with Higher-Order Magnetic Correction in Einstein-Nonlinear-Maxwell Fields,” Symmetry 14, 2054 (2022), arXiv:2210.00468 [gr-qc] .
- Ghulam Mustafa, Farruh Atamurotov, Ibrar Hussain, Sanjar Shaymatov, and Ali Övgün, “Shadows and gravitational weak lensing by the Schwarzschild black hole in the string cloud background with quintessential field*,” Chin. Phys. C 46, 125107 (2022), arXiv:2207.07608 [gr-qc] .
- Mert Okyay and Ali Övgün, “Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors,” JCAP 01, 009 (2022), arXiv:2108.07766 [gr-qc] .
- Farruh Atamurotov, Ibrar Hussain, Ghulam Mustafa, and Ali Övgün, “Weak deflection angle and shadow cast by the charged-Kiselev black hole with cloud of strings in plasma*,” Chin. Phys. C 47, 025102 (2023).
- Askar B. Abdikamalov, Ahmadjon A. Abdujabbarov, Dimitry Ayzenberg, Daniele Malafarina, Cosimo Bambi, and Bobomurat Ahmedov, “Black hole mimicker hiding in the shadow: Optical properties of the γ𝛾\gammaitalic_γ metric,” Phys. Rev. D 100, 024014 (2019), arXiv:1904.06207 [gr-qc] .
- Ahmadjon Abdujabbarov, Bakhtinur Juraev, Bobomurat Ahmedov, and Zdeněk Stuchlík, “Shadow of rotating wormhole in plasma environment,” Astrophys. Space Sci. 361, 226 (2016).
- Farruh Atamurotov and Bobomurat Ahmedov, “Optical properties of black hole in the presence of plasma: shadow,” Phys. Rev. D 92, 084005 (2015), arXiv:1507.08131 [gr-qc] .
- Uma Papnoi, Farruh Atamurotov, Sushant G. Ghosh, and Bobomurat Ahmedov, “Shadow of five-dimensional rotating Myers-Perry black hole,” Phys. Rev. D 90, 024073 (2014), arXiv:1407.0834 [gr-qc] .
- Ahmadjon Abdujabbarov, Farruh Atamurotov, Yusuf Kucukakca, Bobomurat Ahmedov, and Ugur Camci, “Shadow of Kerr-Taub-NUT black hole,” Astrophys. Space Sci. 344, 429–435 (2013), arXiv:1212.4949 [physics.gen-ph] .
- Farruh Atamurotov, Ahmadjon Abdujabbarov, and Bobomurat Ahmedov, “Shadow of rotating non-Kerr black hole,” Phys. Rev. D 88, 064004 (2013).
- Pedro V. P. Cunha and Carlos A. R. Herdeiro, “Shadows and strong gravitational lensing: a brief review,” Gen. Rel. Grav. 50, 42 (2018), arXiv:1801.00860 [gr-qc] .
- Samuel E. Gralla, Daniel E. Holz, and Robert M. Wald, “Black Hole Shadows, Photon Rings, and Lensing Rings,” Phys. Rev. D 100, 024018 (2019), arXiv:1906.00873 [astro-ph.HE] .
- A. Belhaj, H. Belmahi, M. Benali, W. El Hadri, H. El Moumni, and E. Torrente-Lujan, “Shadows of 5D black holes from string theory,” Phys. Lett. B 812, 136025 (2021), arXiv:2008.13478 [hep-th] .
- A. Belhaj, M. Benali, A. El Balali, H. El Moumni, and S. E. Ennadifi, “Deflection angle and shadow behaviors of quintessential black holes in arbitrary dimensions,” Class. Quant. Grav. 37, 215004 (2020), arXiv:2006.01078 [gr-qc] .
- R. A. Konoplya, “Shadow of a black hole surrounded by dark matter,” Phys. Lett. B 795, 1–6 (2019), arXiv:1905.00064 [gr-qc] .
- Shao-Wen Wei, Yuan-Chuan Zou, Yu-Xiao Liu, and Robert B. Mann, “Curvature radius and Kerr black hole shadow,” JCAP 08, 030 (2019), arXiv:1904.07710 [gr-qc] .
- Ru Ling, Hong Guo, Hang Liu, Xiao-Mei Kuang, and Bin Wang, “Shadow and near-horizon characteristics of the acoustic charged black hole in curved spacetime,” Phys. Rev. D 104, 104003 (2021), arXiv:2107.05171 [gr-qc] .
- Rahul Kumar, Sushant G. Ghosh, and Anzhong Wang, “Gravitational deflection of light and shadow cast by rotating Kalb-Ramond black holes,” Phys. Rev. D 101, 104001 (2020), arXiv:2001.00460 [gr-qc] .
- Rahul Kumar and Sushant G. Ghosh, “Accretion onto a noncommutative geometry inspired black hole,” European Physical Journal C 77, 577 (2017), arXiv:1703.10479 [gr-qc] .
- Pedro V. P. Cunha, Carlos A. R. Herdeiro, Burkhard Kleihaus, Jutta Kunz, and Eugen Radu, “Shadows of Einstein–dilaton–Gauss–Bonnet black holes,” Phys. Lett. B 768, 373–379 (2017), arXiv:1701.00079 [gr-qc] .
- Pedro V. P. Cunha, Carlos A. R. Herdeiro, Eugen Radu, and Helgi F. Runarsson, “Shadows of Kerr black holes with and without scalar hair,” Int. J. Mod. Phys. D 25, 1641021 (2016a), arXiv:1605.08293 [gr-qc] .
- P. V. P. Cunha, J. Grover, C. Herdeiro, E. Radu, H. Runarsson, and A. Wittig, “Chaotic lensing around boson stars and Kerr black holes with scalar hair,” Phys. Rev. D 94, 104023 (2016b), arXiv:1609.01340 [gr-qc] .
- Alexander F. Zakharov, “Constraints on a charge in the Reissner-Nordström metric for the black hole at the Galactic Center,” Phys. Rev. D 90, 062007 (2014), arXiv:1407.7457 [gr-qc] .
- Naoki Tsukamoto, “Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes,” Phys. Rev. D 97, 064021 (2018), arXiv:1708.07427 [gr-qc] .
- L. Chakhchi, H. El Moumni, and K. Masmar, “Shadows and optical appearance of a power-Yang-Mills black hole surrounded by different accretion disk profiles,” Phys. Rev. D 105, 064031 (2022).
- Peng-Cheng Li, Minyong Guo, and Bin Chen, “Shadow of a Spinning Black Hole in an Expanding Universe,” Phys. Rev. D 101, 084041 (2020), arXiv:2001.04231 [gr-qc] .
- Prashant Kocherlakota et al. (Event Horizon Telescope), “Constraints on black-hole charges with the 2017 EHT observations of M87*,” Phys. Rev. D 103, 104047 (2021b), arXiv:2105.09343 [gr-qc] .
- Reggie C. Pantig and Ali Övgün, “Testing dynamical torsion effects on the charged black hole’s shadow, deflection angle and greybody with M87* and Sgr. A* from EHT,” Annals Phys. 448, 169197 (2023), arXiv:2206.02161 [gr-qc] .
- Reggie C. Pantig, Leonardo Mastrototaro, Gaetano Lambiase, and Ali Övgün, “Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes,” Eur. Phys. J. C 82, 1155 (2022), arXiv:2208.06664 [gr-qc] .
- Nikko John Leo S. Lobos and Reggie C. Pantig, “Generalized extended uncertainty principle black holes: Shadow and lensing in the macro- and microscopic realms,” Physics 4, 1318–1330 (2022).
- Akhil Uniyal, Reggie C. Pantig, and Ali Övgün, “Probing a non-linear electrodynamics black hole with thin accretion disk, shadow, and deflection angle with M87* and Sgr A* from EHT,” Phys. Dark Univ. 40, 101178 (2023a), arXiv:2205.11072 [gr-qc] .
- Ali Övgün, Reggie C. Pantig, and Ángel Rincón, “4D scale-dependent Schwarzschild-AdS/dS black holes: study of shadow and weak deflection angle and greybody bounding,” Eur. Phys. J. Plus 138, 192 (2023), arXiv:2303.01696 [gr-qc] .
- Akhil Uniyal, Sayan Chakrabarti, Reggie C. Pantig, and Ali Övgün, “Nonlinearly charged black holes: Shadow and Thin-accretion disk,” (2023b), arXiv:2303.07174 [gr-qc] .
- Grigoris Panotopoulos, Ángel Rincón, and Ilidio Lopes, “Orbits of light rays in scale-dependent gravity: Exact analytical solutions to the null geodesic equations,” Phys. Rev. D 103, 104040 (2021), arXiv:2104.13611 [gr-qc] .
- Grigoris Panotopoulos and Angel Rincon, “Orbits of light rays in (1+2)-dimensional Einstein–power–Maxwell gravity: Exact analytical solution to the null geodesic equations,” Annals Phys. 443, 168947 (2022), arXiv:2206.03437 [gr-qc] .
- Mohsen Khodadi and Gaetano Lambiase, “Probing Lorentz symmetry violation using the first image of Sagittarius A*: Constraints on standard-model extension coefficients,” Phys. Rev. D 106, 104050 (2022), arXiv:2206.08601 [gr-qc] .
- Mohsen Khodadi, Gaetano Lambiase, and David F. Mota, “No-hair theorem in the wake of Event Horizon Telescope,” JCAP 09, 028 (2021), arXiv:2107.00834 [gr-qc] .
- Yuan Meng, Xiao-Mei Kuang, Xi-Jing Wang, and Jian-Pin Wu, “Shadow revisiting and weak gravitational lensing with Chern-Simons modification,” (2023), 10.1016/j.physletb.2023.137940, arXiv:2305.04210 [gr-qc] .
- Rajibul Shaikh, “Testing black hole mimickers with the Event Horizon Telescope image of Sagittarius A*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT,” (2022), 10.1093/mnras/stad1383, arXiv:2208.01995 [gr-qc] .
- Rajibul Shaikh, Suvankar Paul, Pritam Banerjee, and Tapobrata Sarkar, “Shadows and thin accretion disk images of the γ𝛾\gammaitalic_γ-metric,” Eur. Phys. J. C 82, 696 (2022), arXiv:2105.12057 [gr-qc] .
- Rajibul Shaikh, Prashant Kocherlakota, Ramesh Narayan, and Pankaj S. Joshi, “Shadows of spherically symmetric black holes and naked singularities,” Mon. Not. Roy. Astron. Soc. 482, 52–64 (2019), arXiv:1802.08060 [astro-ph.HE] .
- Rajibul Shaikh and Pankaj S. Joshi, “Can we distinguish black holes from naked singularities by the images of their accretion disks?” JCAP 10, 064 (2019), arXiv:1909.10322 [gr-qc] .
- Reggie C. Pantig and Ali Övgün, “Dehnen halo effect on a black hole in an ultra-faint dwarf galaxy,” JCAP 08, 056 (2022a), arXiv:2202.07404 [astro-ph.GA] .
- Reggie C. Pantig and Ali Övgün, “Black hole in quantum wave dark matter,” Fortsch. Phys. 2022, 2200164 (2022b), arXiv:2210.00523 [gr-qc] .
- Reggie C. Pantig, “Constraining a one-dimensional wave-type gravitational wave parameter through the shadow of M87* via Event Horizon Telescope,” (2023), arXiv:2303.01698 [gr-qc] .
- Mingzhi Wang, Songbai Chen, and Jiliang Jing, “Effect of gravitational wave on shadow of a Schwarzschild black hole,” Eur. Phys. J. C 81, 509 (2021), arXiv:1908.04527 [gr-qc] .
- Rittick Roy and Sayan Chakrabarti, “Study on black hole shadows in asymptotically de Sitter spacetimes,” Phys. Rev. D 102, 024059 (2020), arXiv:2003.14107 [gr-qc] .
- R. A. Konoplya, “Black holes in galactic centers: Quasinormal ringing, grey-body factors and Unruh temperature,” Phys. Lett. B 823, 136734 (2021), arXiv:2109.01640 [gr-qc] .
- Arshia Anjum, Misba Afrin, and Sushant G. Ghosh, “Astrophysical consequences of dark matter for photon orbits and shadows of supermassive black holes,” (2023), arXiv:2301.06373 [gr-qc] .
- Xian Hou, Zhaoyi Xu, Ming Zhou, and Jiancheng Wang, “Black hole shadow of Sgr A*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT in dark matter halo,” JCAP 07, 015 (2018), arXiv:1804.08110 [gr-qc] .
- William Nelson, “Static Solutions for 4th order gravity,” Phys. Rev. D 82, 104026 (2010), arXiv:1010.3986 [gr-qc] .
- H. Lu, A. Perkins, C. N. Pope, and K. S. Stelle, “Black Holes in Higher-Derivative Gravity,” Phys. Rev. Lett. 114, 171601 (2015), arXiv:1502.01028 [hep-th] .
- H. Lü, A. Perkins, C. N. Pope, and K. S. Stelle, “Spherically Symmetric Solutions in Higher-Derivative Gravity,” Phys. Rev. D 92, 124019 (2015), arXiv:1508.00010 [hep-th] .
- Hoang Ky Nguyen, “Beyond Schwarzschild-de Sitter spacetimes: III. A perturbative vacuo with non-constant scalar curvature in R+R2𝑅superscript𝑅2R+R^{2}italic_R + italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT gravity,” (2022a), arXiv:2211.07380 [gr-qc] .
- Hoang Ky Nguyen, “Beyond Schwarzschild–de Sitter spacetimes: A new exhaustive class of metrics inspired by Buchdahl for pure R2 gravity in a compact form,” Phys. Rev. D 106, 104004 (2022b), arXiv:2211.01769 [gr-qc] .
- Hoang Ky Nguyen, “Beyond Schwarzschild-de Sitter spacetimes: II. An exact non-Schwarzschild metric in pure R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT gravity and new anomalous properties of R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT black holes,” (2022c), arXiv:2211.03542 [gr-qc] .
- Alfredo Macias and Abel Camacho, “On the incompatibility between quantum theory and general relativity,” Phys. Lett. B 663, 99–102 (2008).
- Robert M. Wald, “The Formulation of Quantum Field Theory in Curved Spacetime,” Einstein Stud. 14, 439–449 (2018), arXiv:0907.0416 [gr-qc] .
- Freeman Dyson, “Is a graviton detectable?” Int. J. Mod. Phys. A 28, 1330041 (2013).
- Gerard ’t Hooft and M. J. G. Veltman, “One loop divergencies in the theory of gravitation,” Ann. Inst. H. Poincare Phys. Theor. A 20, 69–94 (1974).
- A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Dokl. Akad. Nauk Ser. Fiz. 177, 70–71 (1967).
- Matt Visser, “Sakharov’s induced gravity: A Modern perspective,” Mod. Phys. Lett. A 17, 977–992 (2002), arXiv:gr-qc/0204062 .
- Erik P. Verlinde, “Emergent Gravity and the Dark Universe,” SciPost Phys. 2, 016 (2017), arXiv:1611.02269 [hep-th] .
- C. D. Froggatt and H. B. Nielsen, “Derivation of Poincare invariance from general quantum field theory,” Annalen Phys. 517, 115 (2005), arXiv:hep-th/0501149 .
- Joseph Polchinski, “Renormalization and Effective Lagrangians,” Nucl. Phys. B 231, 269–295 (1984).
- H. Umezawa, J. Yukawa, and E. Yamada, “The problem of vacuum polarization,” Prog. Theor. Phys. 3, 317–318 (1948).
- Gunnar Kallen, “Higher Approximations in the external field for the Problem of Vacuum Polarization,” Helv. Phys. Acta 22, 637–654 (1949).
- Vincenzo Vitagliano, Thomas P. Sotiriou, and Stefano Liberati, “The dynamics of metric-affine gravity,” Annals Phys. 326, 1259–1273 (2011), [Erratum: Annals Phys. 329, 186–187 (2013)], arXiv:1008.0171 [gr-qc] .
- Canan N. Karahan, Asli Altas, and Durmus A. Demir, “Scalars, Vectors and Tensors from Metric-Affine Gravity,” Gen. Rel. Grav. 45, 319–343 (2013), arXiv:1110.5168 [gr-qc] .
- Durmuş Demir and Beyhan Puliçe, “Geometric Dark Matter,” JCAP 04, 051 (2020), arXiv:2001.06577 [hep-ph] .
- Durmus Demir, “Naturally-Coupled Dark Sectors,” Galaxies 9, 33 (2021b), arXiv:2105.04277 [hep-ph] .
- Stefania Gori et al., “Dark Sector Physics at High-Intensity Experiments,” (2022), arXiv:2209.04671 [hep-ph] .
- J. Beacham et al., “Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report,” J. Phys. G 47, 010501 (2020), arXiv:1901.09966 [hep-ex] .
- Elcio Abdalla and Alessandro Marins, “The Dark Sector Cosmology,” Int. J. Mod. Phys. D 29, 2030014 (2020), arXiv:2010.08528 [gr-qc] .
- Juliette Alimena et al., “Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider,” J. Phys. G 47, 090501 (2020), arXiv:1903.04497 [hep-ex] .
- Gerard ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C 930308, 284–296 (1993), arXiv:gr-qc/9310026 .
- Andrew G. Cohen, David B. Kaplan, and Ann E. Nelson, “Effective field theory, black holes, and the cosmological constant,” Phys. Rev. Lett. 82, 4971–4974 (1999), arXiv:hep-th/9803132 .
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 1984).
- K. Srinivasan and T. Padmanabhan, “Particle production and complex path analysis,” Phys. Rev. D 60, 024007 (1999), arXiv:gr-qc/9812028 .
- Marco Angheben, Mario Nadalini, Luciano Vanzo, and Sergio Zerbini, “Hawking radiation as tunneling for extremal and rotating black holes,” JHEP 05, 014 (2005), arXiv:hep-th/0503081 .
- P. Mitra, “Hawking temperature from tunnelling formalism,” Phys. Lett. B 648, 240–242 (2007), arXiv:hep-th/0611265 .
- Emil T. Akhmedov, Valeria Akhmedova, and Douglas Singleton, “Hawking temperature in the tunneling picture,” Phys. Lett. B 642, 124–128 (2006), arXiv:hep-th/0608098 .
- R. V. Maluf and Juliano C. S. Neves, “Thermodynamics of a class of regular black holes with a generalized uncertainty principle,” Phys. Rev. D 97, 104015 (2018), arXiv:1801.02661 [gr-qc] .
- P. A. González, Ali Övgün, Joel Saavedra, and Yerko Vásquez, “Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole,” Gen. Rel. Grav. 50, 62 (2018), arXiv:1711.01865 [gr-qc] .
- A. Övgün, “Entangled Particles Tunneling From a Schwarzschild Black Hole immersed in an Electromagnetic Universe with GUP,” Int. J. Theor. Phys. 55, 2919–2927 (2016), arXiv:1508.04100 [gr-qc] .
- A. Övgün and Kimet Jusufi, “The effect of the GUP on massive vector and scalar particles tunneling from a warped DGP gravity black hole,” Eur. Phys. J. Plus 132, 298 (2017), arXiv:1703.08073 [physics.gen-ph] .
- Ganim Gecim and Yusuf Sucu, “Tunnelling of relativistic particles from new type black hole in new massive gravity,” JCAP 02, 023 (2013).
- M. Hossain Ali, “Hawking radiation via tunneling from hot NUT-Kerr-Newman-Kasuya spacetime,” Class. Quant. Grav. 24, 5849–5860 (2007), arXiv:0706.3890 [gr-qc] .
- Ryan Kerner and Robert B. Mann, “Fermions tunnelling from black holes,” Class. Quant. Grav. 25, 095014 (2008), arXiv:0710.0612 [hep-th] .
- Wajiha Javed, Rimsha Babar, and Ali Övgün, “Hawking radiation from cubic and quartic black holes via tunneling of GUP corrected scalar and fermion particles,” Mod. Phys. Lett. A 34, 1950057 (2019a), arXiv:1808.09795 [physics.gen-ph] .
- Muhammad Rizwan, Muhammad Zubair Ali, and Ali Övgün, “Charged fermions tunneling from stationary axially symmetric black holes with generalized uncertainty principle,” Mod. Phys. Lett. A 34, 1950184 (2019), arXiv:1812.01983 [physics.gen-ph] .
- Deyou Chen, “Dirac particles‘ tunneling from five-dimensional rotating black strings influenced by the generalized uncertainty principle,” Eur. Phys. J. C 74, 2687 (2014), arXiv:1312.2075 [hep-th] .
- Ganim Gecim and Yusuf Sucu, “Quantum gravity effect on the Hawking radiation of spinning dilaton black hole,” Eur. Phys. J. C 79, 882 (2019).
- Ran Li and Ji-Rong Ren, “Dirac particles tunneling from BTZ black hole,” Phys. Lett. B 661, 370–372 (2008), arXiv:0802.3954 [gr-qc] .
- M. Sharif and Wajiha Javed, “Fermions Tunneling from Charged Accelerating and Rotating Black Holes with NUT Parameter,” Eur. Phys. J. C 72, 1997 (2012), arXiv:1206.2591 [gr-qc] .
- Deyou Chen, Houwen Wu, and Haitang Yang, “Observing remnants by fermions’ tunneling,” JCAP 03, 036 (2014), arXiv:1307.0172 [gr-qc] .
- S. I. Kruglov, “Black hole emission of vector particles in (1+1) dimensions,” Int. J. Mod. Phys. A 29, 1450118 (2014), arXiv:1408.6561 [gr-qc] .
- I. Sakalli and A. Ovgun, “Tunnelling of vector particles from Lorentzian wormholes in 3+1 dimensions,” Eur. Phys. J. Plus 130, 110 (2015), arXiv:1505.02093 [gr-qc] .
- Wajiha Javed, Riasat Ali, Rimsha Babar, and Ali Övgün, “Tunneling of Massive Vector Particles from Types of BTZ-like Black Holes,” Eur. Phys. J. Plus 134, 511 (2019b), arXiv:1910.07949 [gr-qc] .
- A. Övgün and I. Sakalli, “Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime,” Int. J. Theor. Phys. 57, 322–328 (2018), arXiv:1705.00061 [gr-qc] .
- I. Sakalli and A. Övgün, “Quantum Tunneling of Massive Spin-1 Particles From Non-stationary Metrics,” Gen. Rel. Grav. 48, 1 (2016), arXiv:1507.01753 [gr-qc] .
- Xiao-Mei Kuang, Joel Saavedra, and Ali Övgün, “The Effect of the Gauss-Bonnet term to Hawking Radiation from arbitrary dimensional Black Brane,” Eur. Phys. J. C 77, 613 (2017), arXiv:1707.00169 [gr-qc] .
- T. Ibungochouba Singh, I. Ablu Meitei, and K. Yugindro Singh, “Hawking radiation as tunneling of vector particles from Kerr-Newman black hole,” Astrophys. Space Sci. 361, 103 (2016).
- Julien Grain and A. Barrau, “A WKB approach to scalar fields dynamics in curved space-time,” Nucl. Phys. B 742, 253–274 (2006), arXiv:hep-th/0603042 .
- Ryan Kerner and Robert B. Mann, “Tunnelling, temperature and Taub-NUT black holes,” Phys. Rev. D 73, 104010 (2006), arXiv:gr-qc/0603019 .
- A. Övgün, “The Bekenstein-Hawking Corpuscular Cascading from the Back-Reacted Black Hole,” Adv. High Energy Phys. 2017, 1573904 (2017), arXiv:1609.07804 [gr-qc] .
- Don N. Page, “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole,” Phys. Rev. D 13, 198–206 (1976).
- Michael J. Baker and Andrea Thamm, “Black hole evaporation beyond the Standard Model of particle physics,” JHEP 01, 063 (2023), arXiv:2210.02805 [hep-ph] .
- Andrew Cheek, Lucien Heurtier, Yuber F. Perez-Gonzalez, and Jessica Turner, “Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation,” Phys. Rev. D 105, 015022 (2022), arXiv:2107.00013 [hep-ph] .
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199–220 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- Yves Decanini, Gilles Esposito-Farese, and Antoine Folacci, “Universality of high-energy absorption cross sections for black holes,” Phys. Rev. D 83, 044032 (2011), arXiv:1101.0781 [gr-qc] .
- Hao Liao, Songbai Chen, and Jiliang Jing, “Absorption cross section and Hawking radiation of the electromagnetic field with Weyl corrections,” Phys. Lett. B 728, 457–461 (2014), arXiv:1312.1144 [gr-qc] .
- Bahram Mashhoon, “Scattering of Electromagnetic Radiation from a Black Hole,” Phys. Rev. D 7, 2807–2814 (1973).
- Shao-Wen Wei and Yu-Xiao Liu, “Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole,” JCAP 11, 063 (2013), arXiv:1311.4251 [gr-qc] .
- Volker Perlick and Oleg Yu. Tsupko, “Calculating black hole shadows: Review of analytical studies,” Phys. Rept. 947, 1–39 (2022), arXiv:2105.07101 [gr-qc] .
- Dimitrios Psaltis et al. (Event Horizon Telescope), “Gravitational Test Beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole,” Phys. Rev. Lett. 125, 141104 (2020), arXiv:2010.01055 [gr-qc] .
- Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972).
- Xu Lu and Yi Xie, “Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole,” Eur. Phys. J. C 79, 1016 (2019).
- K. S. Virbhadra, D. Narasimha, and S. M. Chitre, “Role of the scalar field in gravitational lensing,” Astron. Astrophys. 337, 1–8 (1998), arXiv:astro-ph/9801174 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.