Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Differentially Private Communication of Measurement Anomalies in the Smart Grid (2403.02324v2)

Published 4 Mar 2024 in eess.SP and cs.CR

Abstract: In this paper, we present a framework based on differential privacy (DP) for querying electric power measurements to detect system anomalies or bad data. Our DP approach conceals consumption and system matrix data, while simultaneously enabling an untrusted third party to test hypotheses of anomalies, such as the presence of bad data, by releasing a randomized sufficient statistic for hypothesis-testing. We consider a measurement model corrupted by Gaussian noise and a sparse noise vector representing the attack, and we observe that the optimal test statistic is a chi-square random variable. To detect possible attacks, we propose a novel DP chi-square noise mechanism that ensures the test does not reveal private information about power injections or the system matrix. The proposed framework provides a robust solution for detecting bad data while preserving the privacy of sensitive power system data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. S. Kalyani and K. S. Swarup, “Particle Swarm Optimization Based K𝐾Kitalic_K-Means Clustering Approach for Security Assessment in Power Systems,” Expert Systems with Applications, vol. 38, no. 9, pp. 10 839–10 846, 2011.
  2. W. Wu and M. Peng, “A Data Mining Approach Combining K𝐾Kitalic_K-Means Clustering With Bagging Neural Network for Short-Term Wind Power Forecasting,” IEEE Internet of Things Journal, vol. 4, no. 4, pp. 979–986, 2017.
  3. X. Dong, L. Qian, and L. Huang, “Short-Term Load Forecasting in Smart Grid: A Combined CNN and K-Means Clustering Approach,” in 2017 IEEE International Conference on Big Data and Smart Computing (BigComp).   IEEE, 2017, pp. 119–125.
  4. K. Zor, O. Timur, and A. Teke, “A State-Of-The-Art Review of Artificial Intelligence Techniques for Short-Term Electric Load Forecasting,” in 2017 6th International Youth Conference on Energy (IYCE).   IEEE, 2017, pp. 1–7.
  5. Y. Liu, P. Ning, and M. K. Reiter, “False Data Injection Attacks against State Estimation in Electric Power Grids,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, jun 2011. [Online]. Available: https://doi.org/10.1145/1952982.1952995
  6. S. Saha, N. Ravi, K. Hreinsson, J. Baek, A. Scaglione, and N. G. Johnson, “A secure distributed ledger for transactive energy: The electron volt exchange (eve) blockchain,” Applied Energy, vol. 282, p. 116208, 2021.
  7. J. Liu, Y. Xiao, S. Li, W. Liang, and C. P. Chen, “Cyber security and privacy issues in smart grids,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 981–997, 2012.
  8. The White House, “National Cybersecurity Strategy,” arpa-e.energy.gov/technologies/programs/grid-data, Mar 2023, (Accessed on 03/21/2024).
  9. Office of Cybersecurity, Energy Security, and Emergency Response, “Considerations for ICS/OT Cybersecurity Monitoring Technologies,” https://www.energy.gov/ceser/considerations-icsot-cybersecurity-monitoring-technologies, (Accessed on 03/21/2024).
  10. The White House, “National Security Memorandum on Improving Cybersecurity for Critical Infrastructure Control Systems,” https://www.whitehouse.gov/briefing-room/statements-releases/2021/07/28/national-security-memorandum-on-improving-cybersecurity-for-critical-infrastructure-control-systems/, Jul 2021, (Accessed on 03/21/2024).
  11. Office of Cybersecurity, Energy Security, and Emergency Response, “DOE Announces $39 Million in Research Funding to Enhance Cybersecurity of Clean Distributed Energy Resources,” 9 2013. [Online]. Available: https://www.energy.gov/ceser/articles/doe-announces-39-million-research-funding-enhance-cybersecurity-clean-distributed
  12. C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our Data, Ourselves: Privacy via Distributed Noise Generation,” in Annual International Conference on the Theory and Applications of Cryptographic Techniques.   Springer, 2006, pp. 486–503.
  13. M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting stealthy false data injection using machine learning in smart grid,” IEEE Systems Journal, vol. 11, no. 3, pp. 1644–1652, 2014.
  14. A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra, “Decision tree and SVM-based data analytics for theft detection in smart grid,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1005–1016, 2016.
  15. A. A. Khan, O. A. Beg, M. Alamaniotis, and S. Ahmed, “Intelligent anomaly identification in cyber-physical inverter-based systems,” Electric Power Systems Research, vol. 193, p. 107024, 2021.
  16. M. R. Habibi, H. R. Baghaee, T. Dragičević, and F. Blaabjerg, “False data injection cyber-attacks mitigation in parallel DC/DC converters based on artificial neural networks,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 717–721, 2020.
  17. Z. Liu, J. Tang, Z. Zhao, and S. Zhang, “Adaptive neural network control for nonlinear cyber-physical systems subject to false data injection attacks with prescribed performance,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2207, p. 20200372, 2021.
  18. E. M. Ferragut, J. Laska, M. M. Olama, and O. Ozmen, “Real-time cyber-physical false data attack detection in smart grids using neural networks,” in 2017 International Conference on Computational Science and Computational Intelligence (CSCI).   IEEE, 2017, pp. 1–6.
  19. M. R. Habibi, H. R. Baghaee, T. Dragičević, and F. Blaabjerg, “Detection of false data injection cyber-attacks in DC microgrids based on recurrent neural networks,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5294–5310, 2020.
  20. M. Dehghani, A. Kavousi-Fard, M. Dabbaghjamanesh, and O. Avatefipour, “Deep learning based method for false data injection attack detection in AC smart islands,” IET Generation, Transmission & Distribution, vol. 14, no. 24, pp. 5756–5765, 2020.
  21. Y. Zhang, J. Wang, and B. Chen, “Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 623–634, 2020.
  22. L. Yang, Y. Li, and Z. Li, “Improved-ELM method for detecting false data attack in smart grid,” International Journal of Electrical Power & Energy Systems, vol. 91, pp. 183–191, 2017.
  23. S. Ruj and A. Nayak, “A Decentralized Security Framework for Data Aggregation and Access Control in Smart Grids,” IEEE transactions on smart grid, vol. 4, no. 1, pp. 196–205, 2013.
  24. M. Wen, R. Xie, K. Lu, L. Wang, and K. Zhang, “Feddetect: A novel privacy-preserving federated learning framework for energy theft detection in smart grid,” IEEE Internet of Things Journal, vol. 9, no. 8, pp. 6069–6080, 2021.
  25. Y. Chang, J. Li, N. Lu, W. Shi, Z. Su, and W. Meng, “Practical Privacy-Preserving Scheme With Fault Tolerance for Smart Grids,” IEEE Internet of Things Journal, 2023.
  26. C. Efthymiou and G. Kalogridis, “Smart Grid Privacy via Anonymization of Smart Metering Data,” in 2010 first IEEE international conference on smart grid communications.   IEEE, 2010, pp. 238–243.
  27. A. Narayanan and V. Shmatikov, “Robust De-Anonymization of Large Sparse Datasets,” in 29th IEEE Symposium on Security and Privacy, May 2008.
  28. Public Utility Commission of the State of Colorado, “Decision No. R11-0922,” Proposed Rules Relating to Smart Grid Data Privacy for Electric Utilities, 2011.
  29. N. Ravi, A. Scaglione, S. Kadam, R. Gentz, S. Peisert, B. Lunghino, E. Levijarvi, and A. Shumavon, “Differentially Private-Means Clustering Applied to Meter Data Analysis and Synthesis,” IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4801–4814, 2022.
  30. M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential Privacy Techniques for Cyber Physical Systems: A Survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 746–789, 2019.
  31. P. Barbosa, A. Brito, and H. Almeida, “A technique to provide differential privacy for appliance usage in smart metering,” Information Sciences, vol. 370, pp. 355–367, 2016.
  32. Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau, “Pegasus: Data-adaptive differentially private stream processing,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1375–1388.
  33. J. Liu, C. Zhang, and Y. Fang, “Epic: A differential privacy framework to defend smart homes against internet traffic analysis,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1206–1217, 2018.
  34. P. Pappachan, M. Degeling, R. Yus, A. Das, S. Bhagavatula, W. Melicher, P. E. Naeini, S. Zhang, L. Bauer, A. Kobsa et al., “Towards privacy-aware smart buildings: Capturing, communicating, and enforcing privacy policies and preferences,” in 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW).   IEEE, 2017, pp. 193–198.
  35. D. Eckhoff and I. Wagner, “Privacy in the smart city—applications, technologies, challenges, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 489–516, 2017.
  36. R. Jia, R. Dong, S. S. Sastry, and C. J. Spanos, “Privacy-enhanced architecture for occupancy-based hvac control,” in Proceedings of the 8th international conference on cyber-physical systems, 2017, pp. 177–186.
  37. S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau, and S. Mehrotra, “Iot-detective: Analyzing iot data under differential privacy,” in Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 1725–1728.
  38. M. Jawurek, F. Kerschbaum, and G. Danezis, “Sok: Privacy technologies for smart grids–a survey of options,” Microsoft Res., Cambridge, UK, vol. 1, pp. 1–16, 2012.
  39. C. Xu, J. Ren, D. Zhang, and Y. Zhang, “Distilling at the edge: A local differential privacy obfuscation framework for iot data analytics,” IEEE Communications Magazine, vol. 56, no. 8, pp. 20–25, 2018.
  40. H. Cao, S. Liu, L. Wu, Z. Guan, and X. Du, “Achieving differential privacy against non-intrusive load monitoring in smart grid: A fog computing approach,” Concurrency and Computation: Practice and Experience, vol. 31, no. 22, p. e4528, 2019.
  41. H.-Y. Tran, J. Hu, and H. R. Pota, “Smart meter data obfuscation with a hybrid privacy-preserving data publishing scheme without a trusted third party,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16 080–16 095, 2022.
  42. M. T. Hossain, S. Badsha, and H. Shen, “Privacy, security, and utility analysis of differentially private cpes data,” in 2021 IEEE Conference on Communications and Network Security (CNS).   IEEE, 2021, pp. 65–73.
  43. M. Gaboardi, H. Lim, R. Rogers, and S. Vadhan, “Differentially private chi-squared hypothesis testing: Goodness of fit and independence testing,” in International conference on machine learning.   PMLR, 2016, pp. 2111–2120.
  44. W.-T. Lin, G. Chen, and X. Zhou, “Privacy-preserving federated learning for detecting false data injection attacks on power system,” Electric Power Systems Research, vol. 229, p. 110150, 2024.
  45. A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE, vol. 88, no. 2, pp. 262–282, 2000.
  46. J. Zhao, A. Gómez-Expósito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal, A. K. Singh, J. Qi et al., “Power system dynamic state estimation: Motivations, definitions, methodologies, and future work,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3188–3198, 2019.
  47. M. Baran and F. F. Wu, “Optimal Sizing of Capacitors Placed on a Radial Distribution System,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735–743, 1989.
  48. M. E. Baran and F. F. Wu, “Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing,” IEEE Transactions on Power delivery, vol. 4, no. 2, pp. 1401–1407, 1989.
  49. R. Ramakrishna and A. Scaglione, “Detection of False Data Injection Attack Using Graph Signal Processing for the Power Grid,” in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP).   IEEE, 2019, pp. 1–5.
  50. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensitivity in Private Data Analysis,” in Theory of Cryptography Conference.   Springer, 2006, pp. 265–284.
  51. D. McClure, “Relaxations of Differential Privacy and Risk/Utility Evaluations of Synthetic Data and Fidelity Measures,” Ph.D. dissertation, Duke University, 2015.
  52. S. Garfinkel, “Differential Privacy and the 2020 US Census,” MIT Case Studies in Social and Ethical Responsibilities of Computing, no. Winter 2022, jan 24 2022, https://mit-serc.pubpub.org/pub/differential-privacy-2020-us-census.
  53. R. Ramakrishna, A. Scaglione, T. Wu, N. Ravi, and S. Peisert, “Differential privacy for class-based data: A practical gaussian mechanism,” IEEE Transactions on Information Forensics and Security, pp. 1–1, 2023.
  54. J.-T. Zhang, “Approximate and Asymptotic Distributions of Chi-Squared–Type Mixtures With Applications,” Journal of the American Statistical Association, vol. 100, no. 469, pp. 273–285, 2005.
  55. D. Ross, “Inequalities for Special Functions,” SIAM Review, vol. 14, no. 3, p. 494, 1972.
  56. D. J. Bordelon, “Inequalities for Special Functions (D. K. Ross),” SIAM Review, vol. 15, no. 3, pp. 665–670, 1973.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube