Designing Exploration Contracts
Abstract: We study a natural application of contract design in the context of sequential exploration problems. In our principal-agent setting, a search task is delegated to an agent. The agent performs a sequential exploration of $n$ boxes, suffers the exploration cost for each inspected box, and selects the content (called the prize) of one inspected box as outcome. Agent and principal obtain an individual value based on the selected prize. To influence the search, the principal a-priori designs a contract with a non-negative payment to the agent for each potential prize. The goal of the principal is to maximize her expected reward, i.e., value minus payment. Interestingly, this natural contract scenario shares close relations with the Pandora's Box problem. We show how to compute optimal contracts for the principal in several scenarios. A popular and important subclass is that of linear contracts, and we show how to compute optimal linear contracts in polynomial time. For general contracts, we obtain optimal contracts under the standard assumption that the agent suffers cost but obtains value only from the transfers by the principal. More generally, for general contracts with non-zero agent values for outcomes we show how to compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal.
- Bayesian analysis of linear contracts. In Proc. 24th Conf. Econ. Comput. (EC), page 66, 2023.
- Contracts with private cost per unit-of-effort. In Proc. 22nd Conf. Econ. Comput. (EC), pages 52–69, 2021.
- Regret-minimizing bayesian persuasion. Games Econ. Behav., 136:226–248, 2022.
- C. Bechtel and S. Dughmi. Delegated Stochastic Probing. In Proc. Symp. Innov. Theoret. Comput. Sci. (ITCS), pages 37:1–37:19, 2021.
- Delegated Pandora’s box. In Proc. 23rd Conf. Econ. Comput. (EC), pages 666–693, 2022.
- H. Beyhaghi and L. Cai. Pandora’s problem with nonobligatory inspection: Optimal structure and a PTAS. In Proc. 55th Symp. Theory Comput. (STOC), pages 803–816, 2023.
- H. Beyhaghi and R. Kleinberg. Pandora’s problem with nonobligatory inspection. In Proc. 20th Conf. Econ. Comput. (EC), pages 131–132, 2019.
- P. Bolton and M. Dewatripont. Contract Theory. MIT Press, 2005.
- Pandora’s box problem with order constraints. Math. Oper. Res., 48(1):498–519, 2023.
- Delegated online search. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 2528–2536, 2023.
- Online Bayesian persuasion. In Proc. Conf. Adv. Neural Inf. Processing Syst. (NeurIPS), 2020.
- Bayesian agency: Linear versus tractable contracts. In Proc. 22nd Conf. Econ. Comput. (EC), pages 285–286, 2021.
- Designing menus of contracts efficiently: The power of randomization. In Proc. 23rd Conf. Econ. Comput. (EC), pages 705–735, 2022.
- Competitive information design for pandora’s box. In Proc. Symp. Discret. Algorithms (SODA), pages 353–381, 2023.
- On supermodular contracts and dense subgraphs. In Proc. Symp. Discret. Algorithms (SODA), 2024. To appear.
- Combinatorial contracts. In Proc. Symp. Found. Comput. Sci. (FOCS), pages 815–826, 2021.
- Multi-agent contracts. In Proc. Symp. Theory Comput. (STOC), pages 1311–1324, 2023.
- Ambiguous contracts. In Proc. 24th Conf. Econ. Comput. (EC), page 539, 2023.
- Simple versus optimal contracts. In Proc. 20th Conf. Econ. Comput. (EC), pages 369–387, 2019.
- The complexity of contracts. SIAM J. Comput., 50(1):211–254, 2021.
- Combinatorial contracts beyond gross substitutes. In Proc. Symp. Discret. Algorithms (SODA), 2024. To appear.
- Online Bayesian recommendation with no regret. In Proc. 23rd Conf. Econ. Comput. (EC), pages 818–819, 2022.
- Pandora box problem with nonobligatory inspection: Hardness and approximation scheme. In Proc. 55th Symp. Theory Comput. (STOC), pages 789–802, 2023.
- The markovian price of information. In Proc. Int. Conf. Integer Prog. and Comb. Opt. (IPCO), pages 233–246, 2019.
- The power of menus in contract design. In Proc. 24th Conf. Econ. Comput. (EC), pages 818–848, 2023.
- Prophet inequalities for Bayesian persuasion. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 175–181, 2020.
- The secretary recommendation problem. Games Econ. Behav., 134:199–228, 2022.
- B. Holmstrom and P. Milgrom. Aggregation and linearity in the provision of intertemporal incentives. Econometrica, 55(2):303–328, 1987.
- B. Holmström. Moral hazard and observability. Bell J. Econ., 10(1):74–91, 1979.
- Delegated search approximates efficient search. In Proc. 19th Conf. Econ. Comput. (EC), pages 287–302, 2018.
- Descending price optimally coordinates search. In Proc. 17th Conf. Econ. Comput. (EC), pages 23–24, 2016.
- Royal Swedish Academy of Sciences. Scientific background on the 2016 nobel prize in economic sciences, 2016.
- Delegated classification. CoRR, abs/2306.11475, 2023.
- Delegating to multiple agents. In Proc. 24th Conf. Econ. Comput. (EC), pages 1081–1126, 2023.
- S. Singla. The price of information in combinatorial optimization. In Proc. Symp. Discret. Algorithms (SODA), pages 2523–2532, 2018.
- M. L. Weitzman. Optimal Search for the Best Alternative. Econometrica, May, 47(3):641–654, 1979.
- Learning to persuade on the fly: Robustness against ignorance. In Proc. 22nd Conf. Econ. Comput. (EC), pages 927–928, 2021.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.