Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Diametric problem for permutations with the Ulam metric (optimal anticodes) (2403.02276v1)

Published 4 Mar 2024 in math.CO

Abstract: We study the diametric problem (i.e., optimal anticodes) in the space of permutations under the Ulam distance. That is, let $S_n$ denote the set of permutations on $n$ symbols, and for each $\sigma, \tau \in S_n$, define their Ulam distance as the number of distinct symbols that must be deleted from each until they are equal. We obtain a near-optimal upper bound on the size of the intersection of two balls in this space, and as a corollary, we prove that a set of diameter at most $k$ has size at most $2{k + C k{2/3}} n! / (n-k)!$, compared to the best known construction of size $n!/(n-k)!$. We also prove that sets of diameter $1$ have at most $n$ elements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.