Signature of localization-delocalization in collisional inhomogeneous spin-orbit coupled condensates (2403.02027v3)
Abstract: We study the localization transition in spin-orbit (SO) coupled binary Bose-Einstein condensates (BECs) with collisional inhomogeneous interaction trapped in a one-dimensional quasiperiodic potential. Our numerical analysis shows that the competition between the quasiperiodic disorder and inhomogeneous interaction leads to a localization-delocalization transition as the interaction strength is tuned from attractive to repulsive in nature. Furthermore, we analyse the combined effect of the SO and Rabi coupling strengths on the localization transition for different interaction strengths and obtain signatures of similar localization-delocalization transition as a function of SO coupling in the regime of weak interactions. We complement our numerical observation with the analytical model using the Gaussian variational approach. In the end, we show how the localization-delocalization is manifested in the quench dynamics of the condensate. Our study provides an indirect approach to achieve localization transition without tuning the quasiperiodic potential strength, but rather by tuning the inhomogeneity in the interaction.
- P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
- M. Cutler and N. F. Mott, Observation of anderson localization in an electron gas, Phys. Rev. 181, 1336 (1969).
- P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57, 287 (1985).
- F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).
- J. Topolancik, B. Ilic, and F. Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett. 99, 253901 (2007).
- A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Statistical signatures of photon localization, Nature 404, 850 (2000).
- P. Pradhan and S. Sridhar, Correlations due to localization in quantum eigenfunctions of disordered microwave cavities, Phys. Rev. Lett. 85, 2360 (2000).
- R. L. Weaver, Anderson localization of ultrasound, Wave Motion 12, 129 (1990).
- A. Lagendijk, B. v. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62, 24 (2009).
- A. Aspect and M. Inguscio, Anderson localization of ultracold atoms, Phys. Today 62, 30 (2009).
- E. A. Ostrovskaya and Y. S. Kivshar, Localization of two-component Bose-Einstein condensates in optical lattices, Phys. Rev. Lett. 92, 180405 (2004).
- K.-T. Xi, J. Li, and D.-N. Shi, Localization of a two-component Bose–Einstein condensate in a two-dimensional bichromatic optical lattice, Phys. B: Condens. 436, 149 (2014).
- Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-coupled Bose-Einstein condensates, Nature 471, 83 (2011).
- Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 89, 063602 (2014).
- W.-Y. Wang, F.-Q. Dou, and W.-S. Duan, Interaction induced localization of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential, Eur. Phys. J. D 73, 1 (2019).
- M. C. P. dos Santos and W. B. Cardoso, Anderson localization induced by interaction in linearly coupled binary Bose-Einstein condensates, Phys. Rev. E 103, 052210 (2021).
- D. A. Zezyulin and V. V. Konotop, Localization of ultracold atoms in Zeeman lattices with incommensurate spin-orbit coupling, Phys. Rev. A 105, 063323 (2022).
- Z. Oztas, Spin orbit coupled Bose-Einstein condensate in a two dimensional bichromatic optical lattice, Phys. Lett. A 383, 504 (2019).
- S. K. Adhikari and L. Salasnich, Localization of a Bose-Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 80, 023606 (2009).
- S. K. Adhikari, Localization of a Bose-Einstein-condensate vortex in a bichromatic optical lattice, Phys. Rev. A 81, 043636 (2010).
- Y. Cheng and S. K. Adhikari, Matter-wave localization in a random potential, Phys. Rev. A 82, 013631 (2010a).
- Y. Cheng and S. K. Adhikari, Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 81, 023620 (2010b).
- Y. Cheng and S. K. Adhikari, Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice, Phys. Rev. A 83, 023620 (2011).
- Y. Cheng and S. K. Adhikari, Spatially-antisymmetric localization of matter wave in a bichromatic optical lattice, Laser Phys. Lett. 7, 824 (2010c).
- M. I. Rodas-Verde, H. Michinel, and V. M. Pérez-García, Controllable soliton emission from a Bose-Einstein condensate, Phys. Rev. Lett. 95, 153903 (2005).
- J. Garnier and F. K. Abdullaev, Transmission of matter-wave solitons through nonlinear traps and barriers, Phys. Rev. A 74, 013604 (2006).
- S. Golam Ali and B. Talukdar, Coupled matter–wave solitons in optical lattices, Ann. Phys. 324, 1194 (2009).
- J. B. Sudharsan, R. Radha, and P. Muruganandam, Collisionally inhomogeneous Bose-Einstein condensates with binary and three-body interactions in a bichromatic optical lattice, J. Phys. B 46, 155302 (2013).
- Y. Cheng, Effective potential of two coupled binary matter wave bright solitons with spatially modulated nonlinearity, J. Phys. B 42, 205005 (2009).
- S. Roy and S. Basu, Interplay of off-diagonal random disorder and quasiperiodic potential in a one-dimensional Aubry-André model, Europhys. Lett. 128, 47005 (2020).
- R. Qi, J. Cao, and X.-P. Jiang, Multiple localization transitions and novel quantum phases induced by a staggered on-site potential, Phys. Rev. B 107, 224201 (2023).
- X.-P. Jiang, Y. Qiao, and J.-P. Cao, Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice, Chinese Phys. B 30, 097202 (2021).
- H. Sakaguchi and B. A. Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E 72, 046610 (2005).
- F. Abdullaev, A. Abdumalikov, and R. Galimzyanov, Gap solitons in Bose–Einstein condensates in linear and nonlinear optical lattices, Phys. Lett. A 367, 149 (2007).
- J. L. Bohn and P. S. Julienne, Prospects for influencing scattering lengths with far-off-resonant light, Phys. Rev. A 56, 1486 (1997).
- R. Ciuryło, E. Tiesinga, and P. S. Julienne, Optical tuning of the scattering length of cold alkaline-earth-metal atoms, Phys. Rev. A 71, 030701 (2005).
- R. Ciuryło, E. Tiesinga, and P. S. Julienne, Stationary phase approximation for the strength of optical Feshbach resonances, Phys. Rev. A 74, 022710 (2006).
- P. Muruganandam and S. K. Adhikari, Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Commun. 180, 1888 (2009).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.