Complexified Synchrony (2403.02006v2)
Abstract: The Kuramoto model and its generalizations have been broadly employed to characterize and mechanistically understand various collective dynamical phenomena, especially the emergence of synchrony among coupled oscillators. Despite almost five decades of research, many questions remain open, in particular for finite-size systems. Here, we generalize recent work [Phys. Rev. Lett. 130, 187201 (2023)] on the finite-size Kuramoto model with its state variables analytically continued to the complex domain and also complexify its system parameters. Intriguingly, systems of two units with purely imaginary coupling do not actively synchronize even for arbitrarily large magnitudes of the coupling strengths, $|K| \rightarrow \infty$, but exhibit conservative dynamics with asynchronous rotations or librations for all $|K|$. For generic complex coupling, both, traditional phase-locked states and asynchronous states generalize to complex locked states, fixed points off the real subspace that exist even for arbitrarily weak coupling. We analyze a new collective mode of rotations exhibiting finite, yet arbitrarily large rotation numbers. Numerical simulations for large networks indicate a novel form of discontinuous phase transition. We close by pointing to a range of exciting questions for future research.
- B. Ermentrout, “An adaptive model for synchrony in the firefly pteroptyx malaccae,” Journal of Mathematical Biology 29, 571–585 (1991).
- K. Wiesenfeld and J. W. Swift, “Averaged equations for Josephson junction series arrays,” Phys. Rev. E 51, 1020–1025 (1995).
- S. A. Marvel and S. H. Strogatz, “Invariant submanifold for series arrays of Josephson junctions,” Chaos 19, 013132 (2009).
- G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, “High-q𝑞qitalic_q cavity-induced synchronization in oscillator arrays,” Phys. Rev. E 61, 2513–2518 (2000).
- P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J. Lobb, “Stimulated Emission and Amplification in Josephson Junction Arrays,” Phys. Rev. Lett. 82, 1963–1966 (1999).
- K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Synchronization Transitions in a Disordered Josephson Series Array,” Phys. Rev. Lett. 76, 404–407 (1996).
- S. Watanabe and S. H. Strogatz, “Constants of motion for superconducting Josephson arrays,” Physica D: Nonlinear Phenomena 74, 197–253 (1994).
- T. Nishikawa and A. E. Motter, “Comparative analysis of existing models for power-grid synchronization,” New Journal of Physics 17, 015012 (2015).
- D. Witthaut, F. Hellmann, J. Kurths, S. Kettemann, H. Meyer-Ortmanns, and M. Timme, “Collective nonlinear dynamics and self-organization in decentralized power grids,” Rev. Mod. Phys. 94, 015005 (2022).
- G. Filatrella, A. H. Nielsen, and N. F. Pedersen, “Analysis of a power grid using a Kuramoto-like model,” The European Physical Journal B 61, 485–491 (2008).
- Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975) pp. 420–422.
- S. H. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,” Physica D: Nonlinear Phenomena 143, 1–20 (2000a).
- J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, “The Kuramoto model: A simple paradigm for synchronization phenomena,” Rev. Mod. Phys. 77, 137–185 (2005).
- F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “The Kuramoto model in complex networks,” Physics Reports 610, 1–98 (2016).
- F. Dörfler and F. Bullo, “Synchronization in complex networks of phase oscillators: A survey,” Automatica 50, 1539–1564 (2014).
- H. Sakaguchi and Y. Kuramoto, “A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment,” Progress of Theoretical Physics 76, 576–581 (1986).
- O. E. Omel’chenko and M. Wolfrum, “Bifurcations in the Sakaguchi–Kuramoto model,” Physica D: Nonlinear Phenomena 263, 74–85 (2013).
- J. T. Ariaratnam and S. H. Strogatz, “Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators,” Phys. Rev. Lett. 86, 4278–4281 (2001).
- R. Gallego, E. Montbrió, and D. Pazó, “Synchronization scenarios in the Winfree model of coupled oscillators,” Phys. Rev. E 96, 042208 (2017).
- D. Pazó and E. Montbrió, “Low-Dimensional Dynamics of Populations of Pulse-Coupled Oscillators,” Phys. Rev. X 4, 011009 (2014).
- M. A. Lohe, “Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization,” Journal of Physics A: Mathematical and Theoretical 51, 225101 (2018).
- M. A. Lohe, “Non-Abelian Kuramoto models and synchronization,” Journal of Physics A: Mathematical and Theoretical 42, 395101 (2009).
- A. E. D. Barioni and M. A. de Aguiar, “Complexity reduction in the 3D Kuramoto model,” Chaos, Solitons & Fractals 149, 111090 (2021a).
- A. E. D. Barioni and M. A. de Aguiar, “Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 113141 (2021b).
- V. Jaćimović and A. Crnkić, “Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere,” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (2018), 10.1063/1.5029485, 083105.
- M. Lipton, R. Mirollo, and S. H. Strogatz, “The Kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry,” Chaos: An Interdisciplinary Journal of Nonlinear Science 31 (2021), 10.1063/5.0060233, 093113.
- A. Crnkić, V. Jaćimović, and M. Marković, “On synchronization in Kuramoto models on spheres,” Analysis and Mathematical Physics 11, 129 (2021).
- S. Chandra, M. Girvan, and E. Ott, “Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model,” Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019a), 10.1063/1.5093038, 053107.
- G. L. Buzanello, A. E. D. Barioni, and M. A. M. de Aguiar, “Matrix coupling and generalized frustration in Kuramoto oscillators,” Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (2022), 10.1063/5.0108672, 093130.
- M. A. M. de Aguiar, “Generalized frustration in the multidimensional Kuramoto model,” Phys. Rev. E 107, 044205 (2023).
- D. Witthaut and M. Timme, “Kuramoto dynamics in hamiltonian systems,” Physical Review E 90, 032917 (2014).
- D. Witthaut, S. Wimberger, R. Burioni, and M. Timme, “Classical synchronization indicates persistent entanglement in isolated quantum systems,” Nature communications 8, 14829 (2017).
- S. Lee and K. Krischer, “Chimera dynamics of generalized Kuramoto–Sakaguchi oscillators in two-population networks,” Journal of Physics A: Mathematical and Theoretical 56, 405001 (2023).
- S. Lee, Y. Jeong, S.-W. Son, and K. Krischer, “Volcano transition in a system of generalized Kuramoto oscillators with random frustrated interactions,” Journal of Physics A: Mathematical and Theoretical 57, 085702 (2024).
- S. Chandra, M. Girvan, and E. Ott, “Continuous versus Discontinuous Transitions in the D𝐷Ditalic_D-Dimensional Generalized Kuramoto Model: Odd D𝐷Ditalic_D is Different,” Phys. Rev. X 9, 011002 (2019b).
- A. Crnkić, V. Jaćimović, and B. Niu, “Conformists and contrarians on spheres,” Journal of Physics A: Mathematical and Theoretical 57, 055201 (2024).
- D. Pazó, “Thermodynamic limit of the first-order phase transition in the Kuramoto model,” Phys. Rev. E 72, 046211 (2005).
- B. Pietras, N. Deschle, and A. Daffertshofer, “First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions,” Phys. Rev. E 98, 062219 (2018).
- X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C.-H. Lai, “Exact solution for first-order synchronization transition in a generalized Kuramoto model,” Scientific Reports 4, 7262 (2014).
- Y. Kuramoto and D. Battogtokh, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators,” Nonlinear Phenom. Complex Syst. 5, 380 (2002).
- M. Timme, “Does dynamics reflect topology in directed networks?” Europhysics Letters 76, 367 (2006).
- D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, “Solvable model for chimera states of coupled oscillators,” Phys. Rev. Lett. 101, 084103 (2008).
- D. M. Abrams and S. H. Strogatz, “Chimera States for Coupled Oscillators,” Phys. Rev. Lett. 93, 174102 (2004).
- M. J. Panaggio and D. M. Abrams, “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators,” Nonlinearity 28, R67–R87 (2015).
- O. E. Omel’chenko, “Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators,” Nonlinearity 26, 2469–2498 (2013).
- E. Ott and T. M. Antonsen, “Low dimensional behavior of large systems of globally coupled oscillators,” Chaos 18, 037113 (2008).
- E. Ott and T. M. Antonsen, “Long time evolution of phase oscillator systems,” Chaos 19, 023117 (2009).
- E. Ott, B. R. Hunt, and T. M. Antonsen, “Comment on “long time evolution of phase oscillator systems” [chaos 19, 023117 (2009)],” Chaos: An Interdisciplinary Journal of Nonlinear Science 21, 025112 (2011).
- S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, “Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action,” Chaos: An Interdisciplinary Journal of Nonlinear Science 19, 043104 (2009).
- S. H. Strogatz and R. E. Mirollo, “Stability of incoherence in a population of coupled oscillators,” Journal of Statistical Physics 63, 613–635 (1991).
- F. Peter and A. Pikovsky, “Transition to collective oscillations in finite Kuramoto ensembles,” Phys. Rev. E 97, 032310 (2018).
- F. Peter, C. C. Gong, and A. Pikovsky, “Microscopic correlations in the finite-size Kuramoto model of coupled oscillators,” Phys. Rev. E 100, 032210 (2019).
- M. Thümler, S. G. M. Srinivas, M. Schröder, and M. Timme, “Synchrony for Weak Coupling in the Complexified Kuramoto Model,” Phys. Rev. Lett. 130, 187201 (2023).
- E. Stein and R. Shakarchi, Complex Analysis, Princeton lectures in analysis (Princeton University Press, 2010).
- B. Branner, “The Mandelbrot Set,” in Proc. symp. appl. math, Vol. 39 (1989) pp. 75–105.
- T. Lei, “Similarity between the Mandelbrot set and Julia sets,” Communications in Mathematical Physics 134, 587–617 (1990).
- C. N. Yang and T. D. Lee, “Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation,” Phys. Rev. 87, 404–409 (1952).
- T. D. Lee and C. N. Yang, “Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model,” Phys. Rev. 87, 410–419 (1952).
- C. M. Bender, “Introduction to 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum theory,” Contemporary Physics 46, 277–292 (2005).
- C. M. Bender, D. D. Holm, and D. W. Hook, “Complexified dynamical systems,” Journal of Physics A: Mathematical and Theoretical 40, F793 (2007).
- C. M. Bender, D. C. Brody, and D. W. Hook, “Quantum effects in classical systems having complex energy,” Journal of Physics A: Mathematical and Theoretical 41, 352003 (2008).
- C. M. Bender and D. W. Hook, “Quantum tunneling as a classical anomaly,” Journal of Physics A: Mathematical and Theoretical 44, 372001 (2011).
- C. M. Bender and D. W. Hook, “𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric classical mechanics,” Journal of Physics: Conference Series 2038, 012003 (2021).
- L. Böttcher and M. A. Porter, “Complex networks with complex weights,” arXiv (2023).
- A. Pikovsky and M. Rosenblum, “Dynamics of heterogeneous oscillator ensembles in terms of collective variables,” Physica D: Nonlinear Phenomena 240, 872–881 (2011).
- J. D. da Fonseca and C. V. Abud, “The Kuramoto model revisited,” Journal of Statistical Mechanics: Theory and Experiment 2018, 103204 (2018).
- I. Nishikawa, K. Iwayama, G. Tanaka, T. Horita, and K. Aihara, “Finite-size scaling in globally coupled phase oscillators with a general coupling scheme,” Progress of Theoretical and Experimental Physics 2014, 023A07 (2014).
- S.-Y. Ha, M.-J. Kang, C. Lattanzio, and B. Rubino, “A class of interacting particle systems on the infinite cylinder with flocking phenomena,” Mathematical Models and Methods in Applied Sciences 22, 1250008 (2012).
- S.-Y. Ha, M. Kang, and B. Moon, “Collective behaviors of a Winfree ensemble on an infinite cylinder,” Discrete and Continuous Dynamical Systems - B 26, 2749–2779 (2021).
- A. Pikovsky and M. Rosenblum, “Synchronization,” Scholarpedia 2, 1459 (2007), revision #137076.
- C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Springer-Verlag New York Inc., 1999).
- Seungjae Lee and Marc Timme (2024).
- D. C. Roberts, “Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators,” Phys. Rev. E 77, 031114 (2008).
- L. Muller, J. Mináč, and T. T. Nguyen, “Algebraic approach to the Kuramoto model,” Phys. Rev. E 104, L022201 (2021).
- R. Cestnik and E. A. Martens, “Integrability of a globally coupled complex riccati array: Quadratic integrate-and-fire neurons, phase oscillators, and all in between,” Phys. Rev. Lett. 132, 057201 (2024).
- M. A. Lohe, “Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization,” Journal of Mathematical Physics 60, 072701 (2019).
- V. García-Morales and K. Krischer, “The complex Ginzburg-Landau equation: an introduction,” Contemporary Physics 53, 79–95 (2012).
- I. S. Aranson and L. Kramer, “The world of the complex Ginzburg-Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).
- B. Ermentrout, “Ermentrout-Kopell canonical model,” Scholarpedia 3, 1398 (2008), revision #122134.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.