Papers
Topics
Authors
Recent
Search
2000 character limit reached

Investigating the Physical Properties of Traversable Wormholes in the Modified $f(R,T)$ Gravity

Published 4 Mar 2024 in gr-qc | (2403.01828v1)

Abstract: In the paper, we analyze some physical properties of static traversable WH within the framework of $f(R,T)$ modified gravitational theory. Firstly, we explore the validity of the null, weak, dominant and strong energy conditions for wormhole matter for the considered $f(R,T)=R+\alpha R2+\lambda T$ model. Research shows that it is possible to obtain traversable WH geometry without bring in exotic matter that violates the null energy condition in the $f(R,T)$ theory. The violation of the dominant energy condition in this model may be related to quantum fluctuations or indicates the existence of special matter that violates this EC within the wormhole. Moreover, it is found that in the $f(R,T)=R+\alpha R2+\lambda T$ model, relative to the GR, the introduction of the geometric term $\alpha R2$ has no remarkable impact on the wormhole matter components and their properties, while the appearance of the matter-geometry coupling term $\lambda T$ can resolve the question that WH matter violates the null, weak and strong energy condition in GR. Additionally, we investigate dependency of the valid NEC on model parameters and quantify the matter components within the wormhole using the ``volume integral quantifier". Lastly, based on the modified Tolman-Oppenheimer-Volkov equation, we find that the traversable WH in this theory is stable. On the other hand, we use the classical reconstruction technique to derive wormhole solution in $f(R,T)$ theory and discuss the corresponding ECs of matter. It is found that all four ECs (NEC, WEC, SEC and DEC) of matter in the traversable wormholes are valid in this reconstructed $f(R,T)$ model, i.e we provide a wormhole solution without introducing the exotic matter and special matter in $f(R,T)$ theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. T. P. Sotiriou and V. Faraoni. Rev. Mod. Phys. 82 (2010) 451.
  2. A. De Felice and S. Tsujikawa. Liv. Rev. Rel. 13 (2010) 161.
  3. P. H. R. S. Moraes and R. A. C. Correa. Astrophys. Space Sci. 361 (2016) 91.
  4. R. A. C. Correa and P. H. R. S. Moraes. Eur. Phys. J. C 76 (2016) 100.
  5. P. H. R. S. Moraes and J. R. L. Santos.Eur. Phys. J. C 76 (2016) 60.
  6. P. H. R. S. Moraes. Int. J. Theor. Phys. 55 (2016) 1307.
  7. P. H. R. S. Moraes. Eur. Phys. J. C 75 (2015) 168.
  8. H. Shabani and M. Farhoudi. Phys. Rev. D 90 (2014) 044031.
  9. P. H. R. S. Moraes. Astrophys. Space Sci. 352 (2014) 273.
  10. H. Shabani and M. Farhoudi. Phys. Rev. D 88 (2013) 044048.
  11. T. Harko. Phys. Rev. D 90 (2014) 044067.12
  12. M. Sharif and M. Zubair. JCAP 03 (2012) 028.
  13. M. Sharif and M. Zubair. JCAP 05 (2012) 001.
  14. L . Flamm.Phys. Z. 17 (1916),448
  15. A. Einstein and N. Rosen. Phys. Rev. 48 (1935) 73
  16. M. S. Morris and K. S. Thorne, Am. J. Phys. 56 (1988) 395.
  17. M. Visser. Physical Review D. 56(1997)12:7578šC7587.
  18. T. Josset, A. Perez and D. Sudarsky. Phys. Rev. Lett. 118 (2017) 021102.
  19. S. V. Sushkov. Phys. Rev. D 71 (2005) 043520.
  20. A. Jawad, S. Rani.Eur. Phys. J. C 76 (2016) 704.
  21. T. Azizi, Int. J. Theor. Phys. 52 (2013) 3486.
  22. P. H. R. S. Moraes, P. K. Sahoo. Phys. Rev. D. 96 (2017) 044038.
  23. I. Noureen, M. Zubair. Eur. Phys. J. C 75 (2015) 62.
  24. M. Zubair, I. Noureen. Eur. Phys. J. C 75 (2015) 265.
  25. D. Gorbunov and A. Tokareva.J. Exp. Theor. Phys. 120 (2015) 528.
  26. N. M. Garcia and F.S.N. Lobo. Class. Quantum Grav. 28 (2011) 085018.
  27. A. A. Starobinsky. Phys. Lett. B 91 (1980) 99.
  28. P. Pavlovic and M. Sossich. Eur. Phys. J. C 75 (2015) 117.
  29. S. Kaneda and S.V. Ketov. Eur. Phys. J. C 76 (2016) 26.
  30. M. J. S. Houndjo and O. F. Piattella. Int. J. Mod. Phys.D 21 (2012) 1250024.
  31. K.N. Singh, A. Errehymy, F. Rahaman, M. Daoud, [arXiv:2002.08160].
  32. F. S. N. Lobo and M. A. Oliveira. Phys. Rev. D 80 (2009) 104012.
  33. S.W. Hawking and G.F.R. Ellis. Cambridge University Press. England, 1973.
  34. A. Raychaudhuri. Phys. Rev., 98 (1955) 1123.
  35. O. Sokoliuk and A. Baransky. Eur. Phys. J. C 81 (2021) 781.
  36. R. Schon and S. T. Yau. Commun. Math. Phys. 79 (1981) 231.
  37. C. Cattoen and M. Visser. J. Phys. Conf. Ser. 68 (2007) 012011.
  38. K. Jusufi, P. Channuie and M. Jamil. Eur.Phys.J.C80 (2020) no.2,127.
  39. M.Visser.Int. J. Mod. Phys. D 11 (2002) 1553-1560.
  40. F. S. N. Lobo.Classical and Quantum Gravity Research. (2008) 1-78.
  41. M. Visser, S. Kar and N. Dadhich. Phys. Rev. Lett. 90 (2003) 201102 .
  42. P. K. F. Khufittig. Eur. Phys. J. C 74 (2014) 2818.
Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.