Papers
Topics
Authors
Recent
2000 character limit reached

Designing Quaternary Hydrides with Potential High T$_c$ Superconductivity (2403.01688v2)

Published 4 Mar 2024 in cond-mat.supr-con and cond-mat.mtrl-sci

Abstract: While hydrogen-rich materials have been demonstrated to exhibit high T$c$ superconductivity at high pressures, there is an ongoing search for ternary and quaternary hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the FCC RH$_3$ structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH${11}$X$3$Y] is based on a Pm$\overline{3}$m structure showing moderately high T$_c$, where the T$_c$ estimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH${11}$)$2$X$_6$YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing T$_c$. The third class [(R$1$H${11}$)(R$2$H$_{11}$)X$_6$YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These model structures and the design principles provide the enough flexibility to optimize both T$_c$ and the structural stability of complex hydrides.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. H. K. Onnes, The superconductivity of mercury, Comm. Phys. Lab. Univ. Leiden 122, 124 (1911).
  2. N. W. Ashcroft, Metallic hydrogen: A high-temperature superconductor?, Phys. Rev. Lett. 21, 1748 (1968).
  3. V. L. Ginzburg, The problem of high-temperature superconductivity, Annual Review of Materials Science 2, 663 (1972).
  4. K. P. Hilleke and E. Zurek, Tuning chemical precompression: Theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures, J. Appl. Phys. 131, 070901 (2022).
  5. N. W. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors?, Phys. Rev. Lett. 92, 187002 (2004).
  6. A. Meninno and I. Errea, Ab initio study of metastable occupation of tetrahedral sites in palladium hydrides and its impact on superconductivity, Phys. Rev. B 107, 024504 (2023).
  7. P. Allen and R. Dynes, Superconductivity at very strong coupling, J. Phys. C: Solid State Physics 8, L158 (1975).
  8. S. Villa-Cortés and O. De la Peña-Seaman, Superconductivity on sch3 and yh3 hydrides: Effects of applied pressure in combination with electron-and hole-doping on the electron–phonon coupling properties, Chinese J. Physics 77, 2333 (2022).
  9. Z. Ouyang, M. Gao, and Z.-Y. Lu, Superconductivity at ambient pressure in hole-doped LuH33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, arXiv preprint arXiv:2306.13981  (2023).
  10. A. Denchfield, H. Park, and R. J. Hemley, Electronic structure of nitrogen-doped lutetium hydrides, Phys. Rev. Mater. 8, L021801 (2024).
  11. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140, A1133 (1965).
  12. Y.-C. Wang, Z.-H. Chen, and H. Jiang, The local projection in the density functional theory plus U approach: A critical assessment, J. Chem. Phys. 144, 144106 (2016).
  13. Y.-W. Fang, D. Dangi’c, and I. Errea, Assessing the feasibility of near-ambient conditions superconductivity in the lu-nh system, arXiv preprint arXiv:2307.10699  (2023).
  14. E. R. Margine and F. Giustino, Anisotropic migdal-eliashberg theory using wannier functions, Phys. Rev. B 87, 024505 (2013).
  15. C. Wang, S. Yi, and J.-H. Cho, Multiband nature of room-temperature superconductivity in lah 10 at high pressure, Phys. Rev. B 101, 104506 (2020).
  16. M. Topsakal and R. Wentzcovitch, Accurate projected augmented wave (paw) datasets for rare-earth elements (re= la–lu), Computational Materials Science 95, 263 (2014).
  17. A. Denchfield, H. Park, and R. Hemley, TBD  (In Preparation).
  18. X. Wang and H. Chen, Large entropy derived from low-frequency vibrations and its implications for hydrogen storage, Appl. Phys. Lett. 112 (2018).
  19. F. Giustino, Electron-phonon interactions from first principles, Reviews of Modern Physics 89, 015003 (2017).
  20. D. Papaconstantopoulos, M. Mehl, and E. Economou, High-temperature superconductivity in the ca-sc-h system, Phys. Rev. B 108, 224508 (2023).
  21. A. Togo, First-principles phonon calculations with phonopy and phono3py, J. Physical Society of Japan 92, 012001 (2023).
  22. O. t. Schob and E. Parthé, Ab compounds with sc, y and rare earth metals. i. scandium and yttrium compounds with crb and cscl structure, Acta Crystallographica 19, 214 (1965).
  23. W. Kalisvaart, R. Niessen, and P. Notten, Electrochemical hydrogen storage in mgsc alloys: A comparative study between thin films and bulk materials, J. Alloys Compd. 417, 280 (2006).
  24. Y. Quan, S. S. Ghosh, and W. E. Pickett, Compressed hydrides as metallic hydrogen superconductors, Phys. Rev. B 100, 184505 (2019).
  25. D. Goodstein and J. Goodstein, Richard feynman and the history of superconductivity, Physics in Perspective 2, 30 (2000).
  26. G. Majer, U. Kaess, and R. Barnes, Model-independent measurements of hydrogen diffusivity in the lanthanum dihydride-trihydride system, Phys. Rev. Lett. 83, 340 (1999).
  27. L. Ouyang, F. Qin, and M. Zhu, The hydrogen storage behavior of Mg3La and Mg3LaNi0.1, Scripta materialia 55, 1075 (2006).
  28. A. Peles and C. G. Van de Walle, Role of charged defects and impurities in kinetics of hydrogen storage materials: A first-principles study, Phys. Rev. B 76, 214101 (2007).
  29. A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comp. Mater. Sci. 95, 337 (2014).
  30. M. Kawamura, Y. Gohda, and S. Tsuneyuki, Improved tetrahedron method for the brillouin-zone integration applicable to response functions, Phys. Rev. B 89, 094515 (2014).
  31. K. Momma and F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallography 44, 1272 (2011).
  32. D. Chakraborty, K. Berland, and T. Thonhauser, Next-generation nonlocal van der waals density functional, J. Chemic. Theory and Comput. 16, 5893 (2020).
  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  34. D.-H. Lee, Routes to high-temperature superconductivity: a lesson from FeSe/SrTiO3, Annu. Rev. Condens. Matter Phys. 9, 261 (2018).
  35. V. Kresin, Y. Ovchinnikov, and S. Wolf, “giant” josephson proximity effect, Applied physics letters 83, 722 (2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: