Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Derivation, characterization, and application of complete orthonormal sequences for representing general three-dimensional states of residual stress (2403.01447v1)

Published 3 Mar 2024 in math-ph and math.MP

Abstract: Residual stresses are self-equilibrated stresses on unloaded bodies. Owing to their complex origins, it is useful to develop functions that can be linearly combined to represent any sufficiently regular residual stress field. In this work, we develop orthonormal sequences that span the set of all square-integrable residual stress fields on a given three-dimensional region. These sequences are obtained by extremizing the most general quadratic, positive-definite functional of the stress gradient on the set of all sufficiently regular residual stress fields subject to a prescribed normalization condition; each such functional yields a sequence. For the special case where the sixth-order coefficient tensor in the functional is homogeneous and isotropic and the fourth-order coefficient tensor in the normalization condition is proportional to the identity tensor, we obtain a three-parameter subfamily of sequences. Upon a suitable parameter normalization, we find that the viable parameter space corresponds to a semi-infinite strip. For a further specialized spherically symmetric case, we obtain analytical expressions for the sequences and the associated Lagrange multipliers. Remarkably, these sequences change little across the entire parameter strip. To illustrate the applicability of our theoretical findings, we employ three such spherically symmetric sequences to accurately approximate two standard residual stress fields. Our work opens avenues for future exploration into the implications of different sequences, achieved by altering both the spatial distribution and the material symmetry class of the coefficient tensors, toward specific objectives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.