Papers
Topics
Authors
Recent
2000 character limit reached

Kubernetes in Action: Exploring the Performance of Kubernetes Distributions in the Cloud

Published 3 Mar 2024 in cs.DC and cs.PF | (2403.01429v1)

Abstract: Kubernetes has emerged as a leading open-source platform for container orchestration, allowing organizations to efficiently manage and deploy containerized applications at scale. This paper investigates the performance of four Kubernetes distributions, namely Kubeadm, K3s, MicroK8s, and K0s when running OpenFaaS as a containerized service on a cluster of computing nodes on CloudLab. For this purpose, experiments are conducted to examine the performance of two virtualization modes, namely HVM and PV, supported by Xen as the underlying hypervisor. Moreover, two container runtimes that are integrated with Kubernetes, namely Docker, and Containerd, are examined to assess their performance on both disk-intensive and CPU-intensive workloads. After determining the appropriate underlying Xen mode and container runtime, the Kubernetes distributions are set up and their performance is measured using various metrics, such as request rate, CPU utilization, and scaling behavior.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Chouat, H., Abbassi, I., Graiet, M., Südholt, M.: Adaptive configuration of iot applications in the fog infrastructure. Computing 105(12), 2747–2772 (2023) Dinesh Kumar and Umamaheswari [2024] Dinesh Kumar, K., Umamaheswari, E.: An efficient proactive vm consolidation technique with improved lstm network in a cloud environment. Computing 106(1), 1–28 (2024) Alfonso et al. [2023] Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Dinesh Kumar, K., Umamaheswari, E.: An efficient proactive vm consolidation technique with improved lstm network in a cloud environment. Computing 106(1), 1–28 (2024) Alfonso et al. [2023] Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  2. Dinesh Kumar, K., Umamaheswari, E.: An efficient proactive vm consolidation technique with improved lstm network in a cloud environment. Computing 106(1), 1–28 (2024) Alfonso et al. [2023] Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  3. Alfonso, I., Garcés, K., Castro, H., Cabot, J.: A model-based infrastructure for the specification and runtime execution of self-adaptive iot architectures. Computing, 1–24 (2023) Mena et al. [2023] Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  4. Mena, M., Criado, J., Iribarne, L., Corral, A., Chbeir, R., Manolopoulos, Y.: Towards high-availability cyber-physical systems using a microservice architecture. Computing, 1–24 (2023) Duplyakin et al. [2019] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  5. Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of {{\{{CloudLab}}\}}. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19), pp. 1–14 (2019) [7] Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  6. Kubernetes. https://www.kubernetes.io. Accessed: January 2024 [8] Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  7. Docker. https://www.docker.com. Accessed: January 2024 [9] Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  8. Apache mesos. https://mesos.apache.org. Accessed: January 2024 Rausch et al. [2021] Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  9. Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 259–271 (2021) [11] Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  10. Kubespray. https://kubespray.io. Accessed: January 2024 [12] K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  11. K3s lightweight kubernetes. https://www.k3s.io. Accessed: January 2024 [13] Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  12. Rancher. https://www.rancher.com. Accessed: January 2024 [14] Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  13. Canonical MicroK8s. https://www.microk8s.io. Accessed: January 2024 [15] k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  14. k0s project. https://k0sproject.io. Accessed: January 2024 Lee et al. [2023] Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  15. Lee, K., Kim, J., Kwon, I.-H., Park, H., Hong, C.-H.: Impact of secure container runtimes on file i/o performance in edge computing. Applied Sciences 13(24) (2023) [17] Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  16. Containerd. https://containerd.io. Accessed: January 2024 Risco et al. [2021] Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  17. Risco, S., Moltó, G., Naranjo, D.M., Blanquer, I.: Serverless workflows for containerised applications in the cloud continuum. Journal of Grid Computing 19, 1–18 (2021) Bouizem et al. [2023] Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  18. Bouizem, Y., Dib, D., Parlavantzas, N., Morin, C.: Integrating request replication into faas platforms: an experimental evaluation. Journal of Cloud Computing 12(1), 94 (2023) [20] Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  19. Knative. https://knative.dev. Accessed: January 2024 [21] Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  20. Apache OpenWhisk. https://openwhisk.apache.org. Accessed: January 2024 [22] Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  21. Fission. https://fission.io. Accessed: January 2024 [23] Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  22. Nuclio. https://nuclio.io. Accessed: January 2024 [24] OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  23. OpenFaaS. https://www.openfaas.com. Accessed: January 2024 [25] OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  24. OpenFaaS Github. https://github.com/openfaas. Accessed: January 2024 Tzenetopoulos et al. [2021] Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  25. Tzenetopoulos, A., Apostolakis, E., Tzomaka, A., Papakostopoulos, C., Stavrakakis, K., Katsaragakis, M., Oroutzoglou, I., Masouros, D., Xydis, S., Soudris, D.: Faas and curious: Performance implications of serverless functions on edge computing platforms. In: High Performance Computing. Springer, (2021) Balla et al. [2021a] Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  26. Balla, D., Maliosz, M., Simon, C.: Estimating function completion time distribution in open source faas. In: 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), pp. 65–71. IEEE, (2021) Balla et al. [2021b] Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  27. Balla, D., Maliosz, M., Simon, C.: Performance evaluation of asynchronous faas. In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 147–156. IEEE, (2021) George et al. [2023] George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  28. George, A.B., Byrne, A., Coskun, A.K.: Microfaas on openfaas: An embedded platform for running cloud functions. In: 2023 IEEE International Conference on Cloud Engineering (IC2E), pp. 230–231. IEEE, (2023) Tiwari and Sharma [2023] Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  29. Tiwari, P., Sharma, S.: Automation of faas serverless frameworks openfaas and openwhisk in private cloud. In: 2023 World Conference on Communication & Computing (WCONF), pp. 1–11. IEEE, (2023) Balla et al. [2023] Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  30. Balla, D., Maliosz, M., Simon, C.: An auto-scaling framework for predictable open source faas function chains. In: 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), pp. 229–237. IEEE, (2023) Raith et al. [2023] Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  31. Raith, P., Rausch, T., Furutanpey, A., Dustdar, S.: faas-sim: A trace-driven simulation framework for serverless edge computing platforms. Software: Practice and Experience 53(12), 2327–2361 (2023) Aqasizade et al. [2024] Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  32. Aqasizade, H., Ataie, E., Bastam, M.: Experimental assessment of containers running on top of virtual machines. arXiv preprint arXiv:2401.07539 (2024) Abeni and Faggioli [2020] Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  33. Abeni, L., Faggioli, D.: Using xen and kvm as real-time hypervisors. Journal of Systems Architecture 106, 101709 (2020) Abeni and Faggioli [2019] Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  34. Abeni, L., Faggioli, D.: An experimental analysis of the xen and kvm latencies. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), pp. 18–26 (2019). IEEE Mavridis and Karatza [2019] Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  35. Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Generation Computer Systems 94, 674–696 (2019) Koziolek and Eskandani [2023] Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  36. Koziolek, H., Eskandani, N.: Lightweight kubernetes distributions: A performance comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, pp. 17–29 (2023) Kjorveziroski and Filiposka [2022] Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  37. Kjorveziroski, V., Filiposka, S.: Kubernetes distributions for the edge: serverless performance evaluation. The Journal of Supercomputing 78(11), 13728–13755 (2022) Costa et al. [2023] Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  38. Costa, J., Matos, R., Araujo, J., Li, J., Choi, E., Nguyen, T.A., Lee, J.-W., Min, D.: Software aging effects on kubernetes in container orchestration systems for digital twin cloud infrastructures of urban air mobility. Drones 7(1), 35 (2023) Mohanty et al. [2018] Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  39. Mohanty, S.K., Premsankar, G., Francesco, M.: An evaluation of open source serverless computing frameworks. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (2018) Palade et al. [2019] Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  40. Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless computing frameworks support at the edge. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211. IEEE, (2019) Balla et al. [2020] Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  41. Balla, D., Maliosz, M., Simon, C.: Open source faas performance aspects. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 358–364 (2020) Li [2021] Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  42. Li, J.: Analyzing open-source serverless platforms: Characteristics and performance (s). In: International Conferences on Software Engineering and Knowledge Engineering. SEKE2021. KSI Research Inc., (2021) Decker et al. [2022] Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  43. Decker, J., Kasprzak, P., Kunkel, J.M.: Performance evaluation of open-source serverless platforms for kubernetes. Algorithms 15(7) (2022) Lee et al. [2018] Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  44. Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing environments. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE, (2018) [46] Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  45. Wen, J., Liu, Y., Chen, Z., Chen, J., Ma, Y.: Characterizing commodity serverless computing platforms. Journal of Software: Evolution and Process 35(10), 2394 [47] Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  46. Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels, and virtual machines for isolation-enhanced multitenant workloads and serverless computing in cloud. Concurrency and Computation: Practice and Experience 35(11), 6365 Bensalem et al. [2023] Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  47. Bensalem, M., Ipek, E., Jukan, A.: Scaling Serverless Functions in Edge Networks: A Reinforcement Learning Approach (2023) Mavridis and Karatza [2017] Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  48. Mavridis, I., Karatza, H.: Performance and overhead study of containers running on top of virtual machines. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 2, pp. 32–38 (2017). IEEE Mondesire et al. [2019] Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  49. Mondesire, S.C., Angelopoulou, A., Sirigampola, S., Goldiez, B.: Combining virtualization and containerization to support interactive games and simulations on the cloud. Simulation Modelling Practice and Theory 93, 233–244 (2019) Lingayat et al. [2018] Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  50. Lingayat, A., Badre, R.R., Gupta, A.K.: Performance evaluation for deploying docker containers on baremetal and virtual machine. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 1019–1023 (2018). IEEE [52] CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  51. CloudLab profile. https://www.cloudlab.us/p/Serverless-umz01/h_aqasiz. Accessed: January 2024 [53] Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  52. Enterprise Open source and Linux | Ubuntu. https://ubuntu.com. Accessed: January 2024 [54] MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  53. MySQL. https://www.mysql.com. Accessed: January 2024 (2023) [55] Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  54. Project Calico. https://www.tigera.io/project-calico. Accessed: January 2024 [56] Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  55. Prometheus. https://prometheus.io. Accessed: January 2024 [57] Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  56. Grafana. https://grafana.com. Accessed: January 2024 [58] Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  57. Prometheus k8s. https://github.com/aqasiz/Prometheus-k8s. Accessed: January 2024 [59] Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  58. Helm package manager. https://helm.sh. Accessed: January 2024 [60] Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  59. Grafana k6. https://k6.io. Accessed: January 2024 [61] Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  60. Sysbench Benchmark. https://github.com/akopytov/sysbench. Accessed: January 2024 [62] IOzone Benchmark. https://www.iozone.org. Accessed: January 2024 IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
  61. IOzone Benchmark. https://www.iozone.org. Accessed: January 2024
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.