Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantum Stabilization and Flat Hydrogen-based Bands of Nitrogen-doped Lutetium Hydride (2403.01350v2)

Published 3 Mar 2024 in cond-mat.supr-con and cond-mat.mtrl-sci

Abstract: We explore electronic and structural properties of Fm$\overline{3}$m Lu-H-N structures with specific N,H ordering as plausible candidates for near-ambient superconductivity possibly originating from their remarkably narrow hydrogen-based bands at the Fermi level. Although LuH${2.875}$N${0.125}$ exhibits an instability persisting up to 17 GPa, it is anharmonically stable near ambient pressure when accounting for quantum nuclear effects. The presence of flat bands near $E_\text{F}$ is understood to arise from destructive\ quantum interference between N-p and surrounding H-s orbitals, with certain types of defects leaving the flat bands unaffected. The results suggest there is an optimal pressure near ambient where the superconducting $T_{\text{c}}$ is maximized in this structure by anharmonically-stabilized low-frequency and non-adiabatically coupled high-frequency hydrogen modes. Despite the metastability of this structure, its electronic properties and dynamical stability when calculated beyond a classical harmonic approach can explain the reported near-ambient superconductivity in Lu-H-N.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. N. W. Ashcroft, Metallic hydrogen: A high-temperature superconductor?, Phys. Rev. Lett. 21, 1748 (1968).
  2. N. W. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors?, Phys. Rev. Lett. 92, 187002 (2004).
  3. K. P. Hilleke and E. Zurek, Tuning chemical precompression: Theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures, J. Appl. Phys. 131, 070901 (2022).
  4. Y.-W. Fang, D. Dangi’c, and I. Errea, Assessing the feasibility of near-ambient conditions superconductivity in the Lu-NH system, arXiv preprint arXiv:2307.10699  (2023).
  5. A. Denchfield, H. Park, and R. J. Hemley, Electronic structure of nitrogen-doped lutetium hydrides, Phys. Rev. Materials 8, L021801 (2024).
  6. W. Wu, Z. Zeng, and X. Wang, Investigations of pressurized Lu-NH materials by using the hybrid functional, arXiv preprint arXiv:2306.11511  (2023).
  7. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
  8. Y.-C. Wang, Z.-H. Chen, and H. Jiang, The local projection in the density functional theory plus U approach: A critical assessment, J. Chem. Phys. 144, 144106 (2016).
  9. K. Tanaka, J. Tse, and H. Liu, Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure, Phys. Rev. B 96, 100502 (2017).
  10. A.-M. Racu and J. Schoenes, Strong correlations in YH3−δ3𝛿{}_{3-\delta}start_FLOATSUBSCRIPT 3 - italic_δ end_FLOATSUBSCRIPT evidenced by raman spectroscopy, Phys. Rev. Lett. 96, 017401 (2006).
  11. M. Drulis, J. Kulej, and H. Drulis, Low temperature specific heat of lutetium trihydride, Journal of alloys and compounds 481, 1 (2009).
  12. A supercell of this size can fully represent the X-point phonon modulations.
  13. G. Majer, U. Kaess, and R. Barnes, Model-independent measurements of hydrogen diffusivity in the lanthanum dihydride-trihydride system, Phys. Rev. Lett. 83, 340 (1999).
  14. P. M. Morse, Diatomic molecules according to the wave mechanics. ii. vibrational levels, Physical Review 34, 57 (1929).
  15. A. Denchfield, H. Park, and R. Hemley, Journal of Nothingness  (In Preparation).
  16. P. Allen and R. Dynes, Superconductivity at very strong coupling, Journal of Physics C: Solid State Physics 8, L158 (1975).
  17. T. Misumi and H. Aoki, New class of flat-band models on tetragonal and hexagonal lattices: Gapped versus crossing flat bands, Phys. Rev. B 96, 155137 (2017).
  18. A. Peles and C. G. Van de Walle, Role of charged defects and impurities in kinetics of hydrogen storage materials: A first-principles study, Phys. Rev. B 76, 214101 (2007).
  19. M. Topsakal and R. Wentzcovitch, Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE= La-Lu), Computational Materials Science 95, 263 (2014).
  20. A. Damle and L. Lin, Disentanglement via entanglement: a unified method for wannier localization, Multiscale Modeling & Simulation 16, 1392 (2018).
  21. D. Leykam, A. Andreanov, and S. Flach, Artificial flat band systems: from lattice models to experiments, Advances in Physics: X 3, 1473052 (2018).
  22. A. Taraphder and P. Coleman, Heavy-fermion behavior in a negative-U Anderson model, Phys. Rev. Lett. 66, 2814 (1991).
  23. H. Matsuura and K. Miyake, Theory of charge kondo effect on pair hopping mechanism, Journal of the Physical Society of Japan 81, 113705 (2012).
  24. Y. Cao and Y.-f. Yang, Flat bands promoted by hund’s rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure, Phys. Rev. B 109, L081105 (2024).
  25. S. Villa-Cortés and O. De la Peña-Seaman, Superconductivity on ScH3 and YH3 hydrides: Effects of applied pressure in combination with electron-and hole-doping on the electron–phonon coupling properties, Chinese Journal of Physics 77, 2333 (2022).
  26. F. Schrodi, P. M. Oppeneer, and A. Aperis, Full-bandwidth eliashberg theory of superconductivity beyond migdal’s approximation, Phys. Rev. B 102, 024503 (2020).
  27. M. Caussé, G. Geneste, and P. Loubeyre, Superionicity of Hδ𝛿\deltaitalic_δ- in LaH10 superhydride, Phys. Rev. B 107, L060301 (2023).
  28. C. Grimaldi, L. Pietronero, and S. Strässler, Nonadiabatic superconductivity: electron-phonon interaction beyond Migdal’s theorem, Phys. Rev. Lett. 75, 1158 (1995).
  29. J. Hague and N. d’Ambrumenil, Breakdown of migdal–eliashberg theory via catastrophic vertex divergence at low phonon frequency, Journal of Low Temperature Physics 151, 1149 (2008).
  30. E. Cappelluti, C. Grimaldi, and L. Pietronero, Electron–phonon driven unconventional superconductivity: The role of small fermi energies and of nonadiabatic processes, Physica C: Superconductivity and its Applications 613, 1354343 (2023).
  31. H. Y. Geng, Q. Wu, and Y. Sun, Prediction of a mobile solid state in dense hydrogen under high pressures, The Journal of Physical Chemistry Letters 8, 223 (2017).
  32. Y. Quan, S. S. Ghosh, and W. E. Pickett, Compressed hydrides as metallic hydrogen superconductors, Phys. Rev. B 100, 184505 (2019).
  33. J. Hsiao, G. J. Martyna, and D. M. Newns, Phase diagram of cuprate high-temperature superconductors described by a field theory based on anharmonic oxygen degrees of freedom, Phys. Rev. Lett. 114, 107001 (2015).
  34. Z. Ouyang, M. Gao, and Z.-Y. Lu, Superconductivity at ambient pressure in hole-doped LuH33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, arXiv preprint arXiv:2306.13981  (2023).
  35. S. A. Chen and K. Law, Ginzburg-landau theory of flat-band superconductors with quantum metric, Phys. Rev. Lett. 132, 026002 (2024).
  36. Private communication with Dr. Riki Kataoka.
  37. X. Wang and H. Chen, Large entropy derived from low-frequency vibrations and its implications for hydrogen storage, Applied Physics Lett. 112 (2018).
  38. T. Dierkes, J. Plewa, and T. Jüstel, From metals to nitrides-syntheses and reaction details of binary rare earth systems, Journal of Alloys and Compounds 693, 291 (2017).
  39. A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comp. Mat. Sci. 95, 337 (2014).
  40. A. Togo, First-principles phonon calculations with phonopy and phono3py, Journal of the Physical Society of Japan 92, 012001 (2023).
  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: