Evolution of Superconductivity in Twisted Graphene Multilayers (2403.00903v2)
Abstract: The group of moir\'e graphene superconductors keeps growing, and by now it contains twisted graphene multilayers and twisted double bilayers. We analyze the contribution of long range charge fluctuations in the superconductivity of twisted double graphene bilayers and helical trilayers, and compare the results to twisted bilayer graphene. We apply a diagrammatic approach which depends on a few, well known parameters. We find that the critical temperature and the order parameter differ significantly between twisted double bilayers and helical trilayers on one hand, and twisted bilayer graphene on the other. We show that this trend, consistent with experiments, can be associated to the role played by moir\'e Umklapp processes in the different systems.
- E. Y. Andrei and A. H. MacDonald, Nature Materials 19, 1265 (2020).
- N. Nakatsuji, T. Kawakami, and M. Koshino, arXiv 10.48550/ARXIV.2305.13155 (2023).
- D. Guerci, Y. Mao, and C. Mora, arXiv 10.48550/ARXIV.2305.03702 (2023).
- Y. Mao, D. Guerci, and C. Mora, Physical Review B 107, 10.1103/physrevb.107.125423 (2023).
- C. Mora, N. Regnault, and B. A. Bernevig, Phys. Rev. Lett. 123, 026402 (2019).
- F. K. Popov and G. Tarnopolsky, arXiv 10.48550/ARXIV.2303.15505 (2023).
- T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä, Physical Review B 98, 10.1103/physrevb.98.220504 (2018).
- F. Wu, A. MacDonald, and I. Martin, Physical Review Letters 121, 10.1103/physrevlett.121.257001 (2018).
- Y. W. Choi and H. J. Choi, Physical Review B 98, 10.1103/physrevb.98.241412 (2018).
- B. Lian, Z. Wang, and B. A. Bernevig, Physical Review Letters 122, 10.1103/physrevlett.122.257002 (2019).
- F. Wu, E. Hwang, and S. D. Sarma, Physical Review B 99, 10.1103/physrevb.99.165112 (2019).
- F. Schrodi, A. Aperis, and P. M. Oppeneer, Physical Review Research 2, 10.1103/physrevresearch.2.012066 (2020).
- F. Wu and S. D. Sarma, Physical Review B 101, 10.1103/physrevb.101.155149 (2020a).
- X. Li, F. Wu, and S. D. Sarma, Physical Review B 101, 10.1103/physrevb.101.245436 (2020).
- R. Samajdar and M. S. Scheurer, Physical Review B 102, 10.1103/physrevb.102.064501 (2020).
- Y. W. Choi and H. J. Choi, Physical Review Letters 127, 10.1103/physrevlett.127.167001 (2021).
- W. Qin, B. Zou, and A. H. MacDonald, Physical Review B 107, 10.1103/physrevb.107.024509 (2023).
- J. González and T. Stauber, Physical Review Letters 122, 10.1103/physrevlett.122.026801 (2019).
- B. Roy and V. Juričić, Physical Review B 99, 10.1103/physrevb.99.121407 (2019).
- C. Lewandowski, D. Chowdhury, and J. Ruhman, Physical Review B 103, 10.1103/physrevb.103.235401 (2021).
- T. Cea and F. Guinea, Proceedings of the National Academy of Sciences 118, 10.1073/pnas.2107874118 (2021).
- B. Pahlevanzadeh, P. Sahebsara, and D. Sénéchal, SciPost Physics 11, 10.21468/scipostphys.11.1.017 (2021).
- T. Cea, Phys. Rev. B 107, L041111 (2023).
- J. González and T. Stauber, Nature Communications 14, 10.1038/s41467-023-38250-w (2023).
- Y.-Z. You and A. Vishwanath, npj Quantum Materials 4, 10.1038/s41535-019-0153-4 (2019).
- F. Wu and S. D. Sarma, Physical Review Letters 124, 10.1103/physrevlett.124.046403 (2020b).
- A. Kumar, M. Xie, and A. H. MacDonald, Physical Review B 104, 10.1103/physrevb.104.035119 (2021).
- V. Kozii, M. P. Zaletel, and N. Bultinck, Physical Review B 106, 10.1103/physrevb.106.235157 (2022).
- H. Isobe, N. F. Yuan, and L. Fu, Physical Review X 8, 10.1103/physrevx.8.041041 (2018).
- Y. Sherkunov and J. J. Betouras, Physical Review B 98, 10.1103/physrevb.98.205151 (2018).
- D. V. Chichinadze, L. Classen, and A. V. Chubukov, Physical Review B 101, 10.1103/physrevb.101.224513 (2020).
- Y.-P. Lin and R. M. Nandkishore, Physical Review B 102, 10.1103/physrevb.102.245122 (2020).
- W. Kohn and J. M. Luttinger, Physical Review Letters 15, 524 (1965).
- A. V. Chubukov, Physical Review B 48, 1097–1104 (1993).
- Z. Dong, A. V. Chubukov, and L. Levitov, Physical Review B 107, 10.1103/physrevb.107.174512 (2023a).
- Z. Dong, L. Levitov, and A. V. Chubukov, Physical Review B 108, 10.1103/physrevb.108.134503 (2023b).
- See supplementary material.
- Y.-T. Hsu, F. Wu, and S. D. Sarma, Physical Review B 102, 10.1103/physrevb.102.085103 (2020).
- Note that a high degree of homogeneity of the wavefunctions results in some regions of momentum space interating much more strongly than others with the Hartree potential, thus leading to strong Hartree distortions in the bandstructure.
- N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
- Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601 (2022).
- W. Yang and G. Zhang, Nature Materials 22, 1285–1286 (2023).
- J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto, Physical Review Letters 99, 10.1103/physrevlett.99.256802 (2007).
- R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108, 12233 (2011).
- M. Koshino and N. N. T. Nam, Physical Review B 101, 10.1103/physrevb.101.195425 (2020).
- N. R. Chebrolu, B. L. Chittari, and J. Jung, Physical Review B 99, 10.1103/physrevb.99.235417 (2019).
- F. Guinea and N. R. Walet, Physical Review B 99, 10.1103/physrevb.99.205134 (2019).
- T. Cea, N. R. Walet, and F. Guinea, Nano Letters 19, 8683–8689 (2019a).
- P. San-Jose, J. González, and F. Guinea, Phys. Rev. Lett. 108, 216802 (2012).
- F. Guinea and N. R. Walet, Proceedings of the National Academy of Sciences 115, 13174–13179 (2018).
- L. Rademaker, D. A. Abanin, and P. Mellado, Phys. Rev. B 100, 205114 (2019).
- T. Cea, N. R. Walet, and F. Guinea, Physical Review B 100, 10.1103/physrevb.100.205113 (2019b).
- P. Moon, Y.-W. Son, and M. Koshino, Phys. Rev. B 90, 155427 (2014).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.