Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Silicon Photonic Microresonator-Based High-Resolution Line-by-Line Pulse Shaping (2403.00732v1)

Published 1 Mar 2024 in physics.optics

Abstract: Optical pulse shaping stands as a formidable technique in ultrafast optics, radio-frequency photonics, and quantum communications. While existing systems rely on bulk optics or integrated platforms with planar waveguide sections for spatial dispersion, they face limitations in achieving finer (few- or sub-GHz) spectrum control. These methods either demand considerable space or suffer from pronounced phase errors and optical losses when assembled to achieve fine resolution. Addressing these challenges, we present a foundry-fabricated six-channel silicon photonic shaper using microresonator filter banks with inline phase control and high spectral resolution. Leveraging existing comb-based spectroscopic techniques, we devise a novel system to mitigate thermal crosstalk and enable the versatile use of our on-chip shaper. Our results demonstrate the shaper's ability to phase-compensate six comb lines at tunable channel spacings of 3, 4, and 5 GHz. Specifically, at a 3 GHz channel spacing, we showcase the generation of arbitrary waveforms in the time domain. This scalable design and control scheme holds promise in meeting future demands for high-precision spectral shaping capabilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (4)
  1. Cohen, L. M. et al. Low-loss, high finesse, add-drop resonators from a commercial silicon photonics foundry. 2022 IEEE Photonics Conference, IPC 2022 - Proceedings 1–2 (2022) . (2) Urabe, K. & Sakai, O. Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser. Physical Review A 88 (2), 023856 (2013) . (3) Jiang, Z., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Urabe, K. & Sakai, O. Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser. Physical Review A 88 (2), 023856 (2013) . (3) Jiang, Z., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Jiang, Z., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 .
  2. Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser. Physical Review A 88 (2), 023856 (2013) . (3) Jiang, Z., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Jiang, Z., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 .
  3. Optical arbitrary waveform generation and characterization using spectral line-by-line control. Journal of Lightwave Technology 24 (7), 2487–2494 (2006) . (4) Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 . Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 .
  4. Ultrafast electrooptic dual-comb interferometry. Optics Express 23 (23), 30557 (2015). 10.1364/oe.23.030557 .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 9 likes.