Otto cycles with a quantum planar rotor (2403.00684v2)
Abstract: We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regards to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a magnetic moment that is subjected to a controlled magnetic field. Here, we prove that the classical rotor is inoperable as a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator mode, exploiting the quantum statistics during the cold strokes of the cycle.
- H. E. D. Scovil and E. O. Schulz-DuBois, Three-Level Masers as Heat Engines, Physical Review Letters 2, 262 (1959).
- E. Geva and R. Kosloff, A quantum-mechanical heat engine operating in finite time. a model consisting of spin-1/2 systems as the working fluid, The Journal of chemical physics 96, 3054 (1992).
- R. Dann and R. Kosloff, Quantum signatures in the quantum carnot cycle, New Journal of Physics 22, 013055 (2020).
- T. Denzler and E. Lutz, Power fluctuations in a finite-time quantum carnot engine, Physical Review Research 3, L032041 (2021).
- M. O. Scully, Quantum afterburner: Improving the efficiency of an ideal heat engine, Physical review letters 88, 050602 (2002).
- M. J. Henrich, F. Rempp, and G. Mahler, Quantum thermodynamic otto machines: A spin-system approach, The European Physical Journal Special Topics 151, 157 (2007).
- R. Kosloff and Y. Rezek, The quantum harmonic otto cycle, Entropy 19, 10.3390/e19040136 (2017).
- J. Son, P. Talkner, and J. Thingna, Monitoring quantum otto engines, PRX Quantum 2, 040328 (2021).
- G. Piccitto, M. Campisi, and D. Rossini, The ising critical quantum otto engine, New Journal of Physics 24, 103023 (2022).
- G. Thomas and R. S. Johal, Coupled quantum otto cycle, Phys. Rev. E 83, 031135 (2011).
- Y. Rezek and R. Kosloff, Irreversible performance of a quantum harmonic heat engine, New Journal of Physics 8, 83 (2006).
- S. Deffner, Efficiency of harmonic quantum otto engines at maximal power, Entropy 20, 10.3390/e20110875 (2018).
- K. Zhang, F. Bariani, and P. Meystre, Quantum optomechanical heat engine, Phys. Rev. Lett. 112, 150602 (2014).
- B. Karimi and J. Pekola, Otto refrigerator based on a superconducting qubit: Classical and quantum performance, Physical Review B 94, 184503 (2016).
- S. Sur and A. Ghosh, Quantum advantage of thermal machines with bose and fermi gases, Entropy 25, 372 (2023).
- A. Rolandi, P. Abiuso, and M. Perarnau-Llobet, Collective advantages in finite-time thermodynamics, Physical Review Letters 131, 210401 (2023).
- S. Seah, S. Nimmrichter, and V. Scarani, Work production of quantum rotor engines, New Journal of Physics 20, 043045 (2018).
- A. Roulet, S. Nimmrichter, and J. M. Taylor, An autonomous single-piston engine with a quantum rotor, Quantum Science and Technology 3, 035008 (2018).
- H. Leitch, K. Hammam, and G. De Chiara, Thermodynamics of hybrid quantum rotor devices, Phys. Rev. E 109, 024108 (2024).
- C. P. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, Reviews of Modern Physics 91, 035005 (2019).
- J. W. Park, S. A. Will, and M. W. Zwierlein, Ultracold dipolar gas of fermionic Na4023KsuperscriptsuperscriptNa4023K{}^{23}\mathrm{Na}^{40}\mathrm{K}start_FLOATSUPERSCRIPT 23 end_FLOATSUPERSCRIPT roman_Na start_POSTSUPERSCRIPT 40 end_POSTSUPERSCRIPT roman_K molecules in their absolute ground state, Phys. Rev. Lett. 114, 205302 (2015).
- B. A. Stickler, K. Hornberger, and M. S. Kim, Quantum rotations of nanoparticles, Nature Reviews Physics 3, 589 (2021).
- M. Kamba, R. Shimizu, and K. Aikawa, Nanoscale feedback control of six degrees of freedom of a near-sphere, Nature Communications 14, 7943 (2023).
- M. A. Pinsky, Introduction to Fourier Analysis and Wavelets - (American Mathematical Society, Providence, Rhode Island, 2023).
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 5th ed., edited by V. H. Moll (Cambridge University Press, 2021).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.