Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Lower-level Duality Based Reformulation and Majorization Minimization Algorithm for Hyperparameter Optimization (2403.00314v1)

Published 1 Mar 2024 in math.OC

Abstract: Hyperparameter tuning is an important task of machine learning, which can be formulated as a bilevel program (BLP). However, most existing algorithms are not applicable for BLP with non-smooth lower-level problems. To address this, we propose a single-level reformulation of the BLP based on lower-level duality without involving any implicit value function. To solve the reformulation, we propose a majorization minimization algorithm that marjorizes the constraint in each iteration. Furthermore, we show that the subproblems of the proposed algorithm for several widely used hyperparameter turning models can be reformulated into conic programs that can be efficiently solved by the off-the-shelf solvers. We theoretically prove the convergence of the proposed algorithm and demonstrate its superiority through numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.