Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A New Class of Compact Formulations for Vehicle Routing Problems (2403.00262v1)

Published 1 Mar 2024 in math.OC

Abstract: This paper introduces a novel compact mixed integer linear programming (MILP) formulation and a discretization discovery-based solution approach for the Vehicle Routing Problem with Time Windows (VRPTW). We aim to solve the optimization problem efficiently by constraining the linear programming (LP) solutions to use only flows corresponding to time and capacity-feasible routes that are locally elementary (prohibiting cycles of customers localized in space). We employ a discretization discovery algorithm to refine the LP relaxation iteratively. This iterative process alternates between two steps: (1) increasing time/capacity/elementarity enforcement to increase the LP objective, albeit at the expense of increased complexity (more variables and constraints), and (2) decreasing enforcement without decreasing the LP objective to reduce complexity. This iterative approach ensures we produce an LP relaxation that closely approximates the optimal MILP objective with minimal complexity, facilitating an efficient solution via an off-the-shelf MILP solver. The effectiveness of our method is demonstrated through empirical evaluations on classical VRPTW instances. We showcase the efficiency of solving the final MILP and multiple iterations of LP relaxations, highlighting the decreased integrality gap of the final LP relaxation. We believe that our approach holds promise for addressing a wide range of routing problems within and beyond the VRPTW domain.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube