Exact closed forms for the transmittance of electromagnetic waves in one-dimensional anisotropic periodic media (2403.00150v1)
Abstract: In this work, we obtain closed expressions for the transfer matrix and the transmittance of electromagnetic waves propagating in finite 1D anisotropic periodic stratified media with an arbitrary number of cells. By invoking the Cayley-Hamilton theorem on the transfer matrix for the electromagnetic field in a periodic stratified media formed by N cells, we obtain a fourth-degree recursive relation for the matrix coefficients that defines the so-called Tetranacci Polynomials. In the symmetric case, corresponding to a unit-cell transfer matrix with a characteristic polynomial where the coefficients of the linear and cubic terms are equal, closed expressions for the solutions to the recursive relation, known as symmetric Tetranacci Polynomials, have recently been derived, allowing us to write the transfer matrix and transmittance in a closed form. We show as sufficient conditions that the $4\times4$ differential propagation matrix of each layer in the binary unit cell, $\Delta$, a) has eigenvalues of the form $\pm p_1$, $\pm p_2$, with $p_1\ne p_2$, and b) its off-diagonal $2\times2$ block matrices possess the same symmetric structure in both layers. Otherwise, the recursive relations are still solvable for any $4\times4$-matrix and provide an algorithm to compute the N-th power of the transfer matrix without carrying out explicitly the matrix multiplication of N matrices. We obtain analytical expressions for the dispersion relation and transmittance, in closed form, for two finite periodic systems: the first one consists of two birefringent uniaxial media with their optical axis perpendicular to the z-axis, and the second consists of two isotropic media subject to an external magnetic field oriented along the z-axis and exhibiting the Faraday effect. Our formalism applies also to lossy media, magnetic anisotropy or optical activity.
- Kroning R de L and Penney W G 1931 Proc. R. Soc. London Ser. A 130 499
- Ashcroft N W and Mermin N D 1976 Solid State Physics (Saunders) Chap. 8.
- Abelès F 1950 Ann. Phys. (Paris) 5 706
- Cvetič M and Pičman L 1981 J. Phys. A 14 379
- Erdös P and Herndon R C 1982 Adv. Phys. 31 65
- Kiang D 1974 Am. J. Phys. 42 785
- Griffiths D J and Steinke C A, Am. J. Phys. 69 2
- Yariv A and Yeh P 1984 Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley)
- Yeh P, Yariv A and Hong C-S 1977 J. Opt. Soc. Am. 67 423
- Bandelow U and Leonhardt U 1993 Opt. Commun. 101 92
- Lekner J 1994 J. Opt. Soc. Am. A 11 2892
- Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
- Kazanskiy V B and Podlozny V V 1999 Microwave Opt. Technol. Lett. 21 299
- Abromowitz M and Stegun I A 1965 Handbook of Mathematical Functions (Dover) 777, 782
- Hiller J, Mendelsohn J D and Rubner M F 2002 Nat. Mater. 1 59
- Boher P and Houdy P 1992 Ann. Phys. (Paris) 17 141
- Spiller E 1994, Soft X-Ray Optics (SPIE) Chap. 7
- Nomura K 2003 Science 300 1269
- Street R A 2009 Adv. Mater. 21 2007
- Chopra K L, Paulson P D and Dutta V 2004 Prog. Photovoltaics 12 69
- Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton U.P.)
- Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
- Kane C L and Mele E. J. 2005 Phys. Rev. Lett. 95 146802
- Lu L, Joannopoulos J D and Soljaić M 2014 Nat. Phot 8 821829
- Schomerus H 2013 Opt. Lett. 380 1912
- Fefferman C L, Lee-Thorp J P and Weinstein M I 2014 PNAS 111 87598763
- Levy E and Akkermans E 2017 Eur. Phys. J. Spec. Top. 226 1563
- Xiao M, Zhang Z Q and Chan C T 2014 Phys. Rev. X 4 021017
- Teitler S and Henvis B W 1970 J. Opt. Soc. Am. 60 830
- Berreman D W 1972 J. Opt. Soc. Am. 62 502
- Yeh P 1979 J. Opt. Soc. Am. 69 742
- Yeh P 1980 Surf. Sc. 96 41
- Lin-Chung P J and Teitler S 1984 J. Opt. Soc. Am. A 1 703
- Li Z-M, Sullivan B T and Parsons R R 1988 Appl. Opt. 27 1334
- Passler N C and Paarmann A 2017 J. Opt. Soc. Am. B 34 2128
- Lin Y K and McDaniel T J 1969 J. Eng. Ind. 91 1133
- Lang S 1987 Linear Algebra (Springer) 3rd ed. 241.
- Barut A O, Zeni J R and Laufer A 1994 J. Phys. A: Math. Gen. 27 5239
- Barut A O, Zeni J R and Laufer A 1994 J. Phys. A: Math. Gen. 27 6799
- Laufer A 1997 J. Phys. A: Math. Gen. 30 5455
- Soykan Y 2020 Int. J. Adv. Appl. Math. and Mech. 8(1), 15
- Leumer N 2023 J. Phys. A: Math. Theor. 56 435202
- Azzam R M A and Bashara N M 1977 Ellipsometry and polarized light (Amsterdam:North-Holland) 350
- Sosnowski T P 1972 Opt. Commun. 4 408
- Born M 1933 Optik (Springer)
- Drude P 1965 The theory of optics (Dover) Ch. VI
- Oldano C and Becchi M 1999 Pramana-J. Phys. 53 131
- Xu W, Wood L T and Golding T D 2000 Phys. Rev. B 61 1740
- Zhang S and Wyrowski F 2015 Proc. SPIE 9630 96300A
- Higham N J 2008 Functions of Matrices: Theory and Computation (Society for Industrial and Applied Mathematics) pp. xx+425.
- Broer W and Podgornik R 2023 Phys. Rev. A 108 (1) 012814
- Webb W A and Parberry E A 1969 Fibonacci Q. 7(5) 457
- Hoggatt V Jr. and Long C T 1974 Fibonacci Q. 12(2) 113
- Özvatan M and Pashaev O K 2017 arXiv:1707.09151
- Lekner J 1991 J. Phys.: Condens. Matter 3 6121
- Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.