Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact closed forms for the transmittance of electromagnetic waves in one-dimensional anisotropic periodic media (2403.00150v1)

Published 29 Feb 2024 in physics.optics, math-ph, and math.MP

Abstract: In this work, we obtain closed expressions for the transfer matrix and the transmittance of electromagnetic waves propagating in finite 1D anisotropic periodic stratified media with an arbitrary number of cells. By invoking the Cayley-Hamilton theorem on the transfer matrix for the electromagnetic field in a periodic stratified media formed by N cells, we obtain a fourth-degree recursive relation for the matrix coefficients that defines the so-called Tetranacci Polynomials. In the symmetric case, corresponding to a unit-cell transfer matrix with a characteristic polynomial where the coefficients of the linear and cubic terms are equal, closed expressions for the solutions to the recursive relation, known as symmetric Tetranacci Polynomials, have recently been derived, allowing us to write the transfer matrix and transmittance in a closed form. We show as sufficient conditions that the $4\times4$ differential propagation matrix of each layer in the binary unit cell, $\Delta$, a) has eigenvalues of the form $\pm p_1$, $\pm p_2$, with $p_1\ne p_2$, and b) its off-diagonal $2\times2$ block matrices possess the same symmetric structure in both layers. Otherwise, the recursive relations are still solvable for any $4\times4$-matrix and provide an algorithm to compute the N-th power of the transfer matrix without carrying out explicitly the matrix multiplication of N matrices. We obtain analytical expressions for the dispersion relation and transmittance, in closed form, for two finite periodic systems: the first one consists of two birefringent uniaxial media with their optical axis perpendicular to the z-axis, and the second consists of two isotropic media subject to an external magnetic field oriented along the z-axis and exhibiting the Faraday effect. Our formalism applies also to lossy media, magnetic anisotropy or optical activity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Kroning R de L and Penney W G 1931 Proc. R. Soc. London Ser. A 130 499
  2. Ashcroft N W and Mermin N D 1976 Solid State Physics (Saunders) Chap. 8.
  3. Abelès F 1950 Ann. Phys. (Paris) 5 706
  4. Cvetič M and Pičman L 1981 J. Phys. A 14 379
  5. Erdös P and Herndon R C 1982 Adv. Phys. 31 65
  6. Kiang D 1974 Am. J. Phys. 42 785
  7. Griffiths D J and Steinke C A, Am. J. Phys. 69 2
  8. Yariv A and Yeh P 1984 Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley)
  9. Yeh P, Yariv A and Hong C-S 1977 J. Opt. Soc. Am. 67 423
  10. Bandelow U and Leonhardt U 1993 Opt. Commun. 101 92
  11. Lekner J 1994 J. Opt. Soc. Am. A 11 2892
  12. Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
  13. Kazanskiy V B and Podlozny V V 1999 Microwave Opt. Technol. Lett. 21 299
  14. Abromowitz M and Stegun I A 1965 Handbook of Mathematical Functions (Dover) 777, 782
  15. Hiller J, Mendelsohn J D and Rubner M F 2002 Nat. Mater. 1 59
  16. Boher P and Houdy P 1992 Ann. Phys. (Paris) 17 141
  17. Spiller E 1994, Soft X-Ray Optics (SPIE) Chap. 7
  18. Nomura K 2003 Science 300 1269
  19. Street R A 2009 Adv. Mater. 21 2007
  20. Chopra K L, Paulson P D and Dutta V 2004 Prog. Photovoltaics 12 69
  21. Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton U.P.)
  22. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
  23. Kane C L and Mele E. J. 2005 Phys. Rev. Lett. 95 146802
  24. Lu L, Joannopoulos J D and Soljaić M 2014 Nat. Phot 8 821829
  25. Schomerus H 2013 Opt. Lett. 380 1912
  26. Fefferman C L, Lee-Thorp J P and Weinstein M I 2014 PNAS 111 87598763
  27. Levy E and Akkermans E 2017 Eur. Phys. J. Spec. Top. 226 1563
  28. Xiao M, Zhang Z Q and Chan C T 2014 Phys. Rev. X 4 021017
  29. Teitler S and Henvis B W 1970 J. Opt. Soc. Am. 60 830
  30. Berreman D W 1972 J. Opt. Soc. Am. 62 502
  31. Yeh P 1979 J. Opt. Soc. Am. 69 742
  32. Yeh P 1980 Surf. Sc. 96 41
  33. Lin-Chung P J and Teitler S 1984 J. Opt. Soc. Am. A 1 703
  34. Li Z-M, Sullivan B T and Parsons R R 1988 Appl. Opt. 27 1334
  35. Passler N C and Paarmann A 2017 J. Opt. Soc. Am. B 34 2128
  36. Lin Y K and McDaniel T J 1969 J. Eng. Ind. 91 1133
  37. Lang S 1987 Linear Algebra (Springer) 3rd ed. 241.
  38. Barut A O, Zeni J R and Laufer A 1994 J. Phys. A: Math. Gen. 27 5239
  39. Barut A O, Zeni J R and Laufer A 1994 J. Phys. A: Math. Gen. 27 6799
  40. Laufer A 1997 J. Phys. A: Math. Gen. 30 5455
  41. Soykan Y 2020 Int. J. Adv. Appl. Math. and Mech. 8(1), 15
  42. Leumer N 2023 J. Phys. A: Math. Theor. 56 435202
  43. Azzam R M A and Bashara N M 1977 Ellipsometry and polarized light (Amsterdam:North-Holland) 350
  44. Sosnowski T P 1972 Opt. Commun. 4 408
  45. Born M 1933 Optik (Springer)
  46. Drude P 1965 The theory of optics (Dover) Ch. VI
  47. Oldano C and Becchi M 1999 Pramana-J. Phys. 53 131
  48. Xu W, Wood L T and Golding T D 2000 Phys. Rev. B 61 1740
  49. Zhang S and Wyrowski F 2015 Proc. SPIE 9630 96300A
  50. Higham N J 2008 Functions of Matrices: Theory and Computation (Society for Industrial and Applied Mathematics) pp. xx+425.
  51. Broer W and Podgornik R 2023 Phys. Rev. A 108 (1) 012814
  52. Webb W A and Parberry E A 1969 Fibonacci Q. 7(5) 457
  53. Hoggatt V Jr. and Long C T 1974 Fibonacci Q. 12(2) 113
  54. Özvatan M and Pashaev O K 2017 arXiv:1707.09151
  55. Lekner J 1991 J. Phys.: Condens. Matter 3 6121
  56. Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: