Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Hardware Roofline: Evaluating the Impact of Gate Expressivity on Quantum Processor Design (2403.00132v1)

Published 29 Feb 2024 in quant-ph, cs.AR, and cs.PF

Abstract: The design space of current quantum computers is expansive with no obvious winning solution. This leaves practitioners with a clear question: "What is the optimal system configuration to run an algorithm?". This paper explores hardware design trade-offs across NISQ systems to guide algorithm and hardware design choices. The evaluation is driven by algorithmic workloads and algorithm fidelity models which capture architectural features such as gate expressivity, fidelity, and crosstalk. We also argue that the criteria for gate design and selection should be extended from maximizing average fidelity to a more comprehensive approach that takes into account the gate expressivity with respect to algorithmic structures. We consider native entangling gates (CNOT, ECR, CZ, ZZ, XX, Sycamore, $\sqrt{\text{iSWAP}}$), proposed gates (B Gate, $\sqrt[4]{\text{CNOT}}$, $\sqrt[8]{\text{CNOT}}$), as well as parameterized gates (FSim, XY). Our methodology is driven by a custom synthesis driven circuit compilation workflow, which is able to produce minimal circuit representations for a given system configuration. By providing a method to evaluate the suitability of algorithms for hardware platforms, this work emphasizes the importance of hardware-software co-design for quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. S. Aaronson and L. Chen, “Complexity-Theoretic Foundations of Quantum Supremacy Experiments,” arXiv:1612.05903 [quant-ph], Dec. 2016, arXiv: 1612.05903. [Online]. Available: http://arxiv.org/abs/1612.05903
  2. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. R. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. N. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Supplementary information for ”Quantum supremacy using a programmable superconducting processor”,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, arXiv:1910.11333 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1910.11333
  3. F. Bao, H. Deng, D. Ding, R. Gao, X. Gao, C. Huang, X. Jiang, H.-S. Ku, Z. Li, X. Ma, X. Ni, J. Qin, Z. Song, H. Sun, C. Tang, T. Wang, F. Wu, T. Xia, W. Yu, F. Zhang, G. Zhang, X. Zhang, J. Zhou, X. Zhu, Y. Shi, J. Chen, H.-H. Zhao, and C. Deng, “Fluxonium: an alternative qubit platform for high-fidelity operations,” Physical Review Letters, vol. 129, no. 1, p. 010502, Jun. 2022, arXiv:2111.13504 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2111.13504
  4. R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Coherent josephson qubit suitable for scalable quantum integrated circuits,” Phys. Rev. Lett., vol. 111, p. 080502, Aug 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.111.080502
  5. S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 qubits,” Feb. 2003, arXiv:quant-ph/0205095. [Online]. Available: http://arxiv.org/abs/quant-ph/0205095
  6. S. Bravyi and A. Kitaev, “Fermionic quantum computation,” Annals of Physics, vol. 298, no. 1, pp. 210–226, May 2002, arXiv:quant-ph/0003137. [Online]. Available: http://arxiv.org/abs/quant-ph/0003137
  7. M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in quantum machine learning,” Nature Computational Science, vol. 2, no. 9, pp. 567–576, Sep. 2022, number: 9 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s43588-022-00311-3
  8. J.-S. Chen, E. Nielsen, M. Ebert, V. Inlek, K. Wright, V. Chaplin, A. Maksymov, E. Páez, A. Poudel, P. Maunz, and J. Gamble, “Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits,” Aug. 2023, arXiv:2308.05071 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2308.05071
  9. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett., vol. 74, pp. 4091–4094, May 1995. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
  10. A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase gadget synthesis for shallow circuits,” Electronic Proceedings in Theoretical Computer Science, vol. 318, p. 213–228, May 2020. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.318.13
  11. A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Physical Review A, vol. 100, no. 3, p. 032328, Sep. 2019, arXiv:1811.12926 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1811.12926
  12. M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, “Towards optimal topology aware quantum circuit synthesis,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 223–234.
  13. C. Developers, “Cirq,” Jul. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.8161252
  14. A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature Communications, vol. 10, no. 1, nov 2019. [Online]. Available: https://doi.org/10.1038%2Fs41467-019-13068-7
  15. E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” Nov. 2014, arXiv:1411.4028 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1411.4028
  16. D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia, and Y. Alexeev, “A Survey of Quantum Computing for Finance,” Jun. 2022, arXiv:2201.02773 [quant-ph, q-fin]. [Online]. Available: http://arxiv.org/abs/2201.02773
  17. P. Horodecki, M. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction and quasi-distillation,” Mar. 1999, arXiv:quant-ph/9807091. [Online]. Available: http://arxiv.org/abs/quant-ph/9807091
  18. IonQ Staff, “IonQ Forte: The First Software-Configurable Quantum Computer.” [Online]. Available: https://ionq.com/resources/ionq-forte-first-configurable-quantum-computer
  19. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett., vol. 85, pp. 2208–2211, Sep 2000. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.85.2208
  20. Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A. Kandala, “Evidence for the utility of quantum computing before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–505, Jun. 2023, number: 7965 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-023-06096-3
  21. E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized Benchmarking of Quantum Gates,” Physical Review A, vol. 77, no. 1, p. 012307, Jan. 2008, arXiv:0707.0963 [quant-ph]. [Online]. Available: http://arxiv.org/abs/0707.0963
  22. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum devices,” 2019.
  23. G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the Co-Design of Quantum Software and Hardware,” in Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication, ser. NANOCOM ’21.   New York, NY, USA: Association for Computing Machinery, Sep. 2021, pp. 1–7. [Online]. Available: https://dl.acm.org/doi/10.1145/3477206.3477464
  24. S. F. Lin, S. Sussman, C. Duckering, P. S. Mundada, J. M. Baker, R. S. Kumar, A. A. Houck, and F. T. Chong, “Let each quantum bit choose its basis gates,” in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022, pp. 1042–1058.
  25. J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and C. Iancu, “Tackling the Qubit Mapping Problem with Permutation-Aware Synthesis,” May 2023, arXiv:2305.02939 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2305.02939
  26. E. Magesan, J. M. Gambetta, and J. Emerson, “Robust randomized benchmarking of quantum processes,” Physical Review Letters, vol. 106, no. 18, p. 180504, May 2011, arXiv:1009.3639 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1009.3639
  27. E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing Quantum Gates via Randomized Benchmarking,” Physical Review A, vol. 85, no. 4, p. 042311, Apr. 2012, arXiv:1109.6887 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1109.6887
  28. A. Mandviwalla, K. Ohshiro, and B. Ji, “Implementing Grover’s Algorithm on the IBM Quantum Computers,” in 2018 IEEE International Conference on Big Data (Big Data), Dec. 2018, pp. 2531–2537. [Online]. Available: https://ieeexplore.ieee.org/document/8622457
  29. J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. S. Fried, C. Gidney, T. Häner, V. Havlíček, Z. Jiang, M. Neeley, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, W. Sun, K. Sung, and R. Babbush, “Openfermion: The electronic structure package for quantum computers,” 2017, cite arxiv:1710.07629. [Online]. Available: http://arxiv.org/abs/1710.07629
  30. M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum circuits for general multiqubit gates,” Physical review letters, vol. 93, no. 13, p. 130502, 2004.
  31. M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, oct 2002. [Online]. Available: https://doi.org/10.1016%2Fs0375-9601%2802%2901272-0
  32. L. B. Oftelie, R. V. Beeumen, E. Younis, E. Smith, C. Iancu, and W. A. de Jong, “Constant-depth circuits for dynamic simulations of materials on quantum computers,” Materials Theory, vol. 6, no. 1, mar 2022. [Online]. Available: https://doi.org/10.1186%2Fs41313-022-00043-x
  33. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, Jul. 2014, arXiv:1304.3061 [physics, physics:quant-ph]. [Online]. Available: http://arxiv.org/abs/1304.3061
  34. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
  35. P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via adaptive circuit compression,” 2022.
  36. H. Safi, K. Wintersperger, and W. Mauerer, “Influence of HW-SW-Co-Design on Quantum Computing Scalability,” Jun. 2023, arXiv:2306.04246 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2306.04246
  37. D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, and N. Park, “Phonon-driven spin-Floquet magneto-valleytronics in MoS2,” Nature Communications, vol. 9, no. 1, p. 638, Feb. 2018, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-018-02918-5
  38. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t$|$ket$\rangle$ : A Retargetable Compiler for NISQ Devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, Jan. 2021, arXiv:2003.10611 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2003.10611
  39. R. R. Tucci, “An introduction to cartan’s kak decomposition for qc programmers,” 2005.
  40. M. Weiden, E. Younis, J. Kalloor, J. Kubiatowicz, and C. Iancu, “Improving Quantum Circuit Synthesis with Machine Learning,” Jun. 2023, arXiv:2306.05622 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2306.05622
  41. E. Younis and C. Iancu, “Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation,” Jun. 2022, arXiv:2206.07885 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2206.07885
  42. E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov//servlets/purl/1785933
  43. J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Minimum construction of two-qubit quantum operations,” Physical Review Letters, vol. 93, no. 2, p. 020502, Jul. 2004, arXiv:quant-ph/0312193. [Online]. Available: http://arxiv.org/abs/quant-ph/0312193
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.