Crystalline axion electrodynamics in charge-ordered Dirac semimetals (2403.00055v2)
Abstract: Three-dimensional Dirac semimetals can be driven into an insulating state by coupling to a charge density wave (CDW) order. Here, we consider the quantized crystalline responses of such charge-ordered Dirac semimetals, which we dub Dirac-CDW insulators, in which charge is bound to disclination defects of the lattice. Using analytic and numeric methods we show the following. First, when the CDW is lattice-commensurate, disclination-line defects of the lattice have a quantized charge per length. Second, when the CDW is inversion-symmetric, disclinations of the lattice have a quantized electric polarization. Third, when the CDW is lattice-commensurate and inversion-symmetric, disclinations are characterized by a "disclination filling anomaly" -- a quantized difference in the total charge bound to disclination-lines of Dirac-CDW with open and periodic boundaries. We construct an effective response theory that captures the topological responses of the Dirac-CDW insulators in terms of a total derivative term, denoted the $R\wedge F$ term. The $R\wedge F$ term describes the crystalline analog of the axion electrodynamics that are found in Weyl semimetal-CDW insulators. We also use the crystalline responses and corresponding response theories to classify the strongly correlated topological phases of three-dimensions Dirac-semimetals.
- A. Burkov and L. Balents, Physical review letters 107, 127205 (2011).
- A. Zyuzin and A. Burkov, Physical Review B 86, 115133 (2012).
- H. B. Nielsen and M. Ninomiya, Physics Letters B 130, 389 (1983).
- A. Burkov, Annual Review of Condensed Matter Physics 9, 359 (2018).
- F. Klinkhamer and G. Volovik, International Journal of Modern Physics A 20, 2795 (2005).
- S. Murakami, New Journal of Physics 9, 356 (2007).
- F. Wilczek, Physical review letters 58, 1799 (1987).
- Z. Wang and S.-C. Zhang, Physical Review B 87, 161107 (2013).
- J. Maciejko and R. Nandkishore, Physical Review B 90, 035126 (2014).
- E. Witten, Reviews of Modern Physics 88, 035001 (2016).
- N. Varnava and D. Vanderbilt, Physical Review B 98, 245117 (2018).
- B. J. Wieder and B. A. Bernevig, arXiv preprint arXiv:1810.02373 (2018).
- B. I. Halperin, Japanese Journal of Applied Physics 26, 1913 (1987).
- F. Haldane, Physical review letters 93, 206602 (2004).
- J. C. Teo and C. L. Kane, Physical Review B 82, 115120 (2010).
- M. Barkeshli and X.-L. Qi, Physical Review X 2, 031013 (2012).
- D. Asahi and N. Nagaosa, Physical Review B 86, 100504 (2012).
- J. C. Teo and T. L. Hughes, Annual Review of Condensed Matter Physics 8, 211 (2017).
- B. Roy and V. Juričić, Physical Review Research 3, 033107 (2021).
- J. C. Teo and T. L. Hughes, Physical review letters 111, 047006 (2013).
- N. Manjunath and M. Barkeshli, Physical Review Research 3, 013040 (2021).
- X.-g. Wen and A. Zee, Physical review letters 69, 953 (1992).
- A. Rüegg and C. Lin, Physical Review Letters 110, 046401 (2013).
- N. Manjunath and M. Barkeshli, arXiv preprint arXiv:2012.11603 (2020).
- J. May-Mann and T. L. Hughes, Physical Review B 106, L241113 (2022).
- B.-J. Yang and N. Nagaosa, Nature Communications 5, 4898 (2014).
- S. T. Ramamurthy and T. L. Hughes, Physical Review B 92, 085105 (2015).
- L. Gioia and C. Wang, Phys. Rev. X 12, 031007 (2022).
- C. L. Kane and E. J. Mele, Physical review letters 95, 226801 (2005).
- L. Fu and C. L. Kane, Physical Review B 76, 045302 (2007).
- S. Coh and D. Vanderbilt, Phys. Rev. Lett. 102, 107603 (2009).
- Y. Fang and J. Cano, Physical Review B 103, 165109 (2021).
- P. Rao and B. Bradlyn, Physical Review B 107, 195153 (2023).
- M. Lin and T. L. Hughes, Physical Review B 98, 241103 (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.