Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Crystalline axion electrodynamics in charge-ordered Dirac semimetals (2403.00055v2)

Published 29 Feb 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: Three-dimensional Dirac semimetals can be driven into an insulating state by coupling to a charge density wave (CDW) order. Here, we consider the quantized crystalline responses of such charge-ordered Dirac semimetals, which we dub Dirac-CDW insulators, in which charge is bound to disclination defects of the lattice. Using analytic and numeric methods we show the following. First, when the CDW is lattice-commensurate, disclination-line defects of the lattice have a quantized charge per length. Second, when the CDW is inversion-symmetric, disclinations of the lattice have a quantized electric polarization. Third, when the CDW is lattice-commensurate and inversion-symmetric, disclinations are characterized by a "disclination filling anomaly" -- a quantized difference in the total charge bound to disclination-lines of Dirac-CDW with open and periodic boundaries. We construct an effective response theory that captures the topological responses of the Dirac-CDW insulators in terms of a total derivative term, denoted the $R\wedge F$ term. The $R\wedge F$ term describes the crystalline analog of the axion electrodynamics that are found in Weyl semimetal-CDW insulators. We also use the crystalline responses and corresponding response theories to classify the strongly correlated topological phases of three-dimensions Dirac-semimetals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Burkov and L. Balents, Physical review letters 107, 127205 (2011).
  2. A. Zyuzin and A. Burkov, Physical Review B 86, 115133 (2012).
  3. H. B. Nielsen and M. Ninomiya, Physics Letters B 130, 389 (1983).
  4. A. Burkov, Annual Review of Condensed Matter Physics 9, 359 (2018).
  5. F. Klinkhamer and G. Volovik, International Journal of Modern Physics A 20, 2795 (2005).
  6. S. Murakami, New Journal of Physics 9, 356 (2007).
  7. F. Wilczek, Physical review letters 58, 1799 (1987).
  8. Z. Wang and S.-C. Zhang, Physical Review B 87, 161107 (2013).
  9. J. Maciejko and R. Nandkishore, Physical Review B 90, 035126 (2014).
  10. E. Witten, Reviews of Modern Physics 88, 035001 (2016).
  11. N. Varnava and D. Vanderbilt, Physical Review B 98, 245117 (2018).
  12. B. J. Wieder and B. A. Bernevig, arXiv preprint arXiv:1810.02373  (2018).
  13. B. I. Halperin, Japanese Journal of Applied Physics 26, 1913 (1987).
  14. F. Haldane, Physical review letters 93, 206602 (2004).
  15. J. C. Teo and C. L. Kane, Physical Review B 82, 115120 (2010).
  16. M. Barkeshli and X.-L. Qi, Physical Review X 2, 031013 (2012).
  17. D. Asahi and N. Nagaosa, Physical Review B 86, 100504 (2012).
  18. J. C. Teo and T. L. Hughes, Annual Review of Condensed Matter Physics 8, 211 (2017).
  19. B. Roy and V. Juričić, Physical Review Research 3, 033107 (2021).
  20. J. C. Teo and T. L. Hughes, Physical review letters 111, 047006 (2013).
  21. N. Manjunath and M. Barkeshli, Physical Review Research 3, 013040 (2021).
  22. X.-g. Wen and A. Zee, Physical review letters 69, 953 (1992).
  23. A. Rüegg and C. Lin, Physical Review Letters 110, 046401 (2013).
  24. N. Manjunath and M. Barkeshli, arXiv preprint arXiv:2012.11603  (2020).
  25. J. May-Mann and T. L. Hughes, Physical Review B 106, L241113 (2022).
  26. B.-J. Yang and N. Nagaosa, Nature Communications 5, 4898 (2014).
  27. S. T. Ramamurthy and T. L. Hughes, Physical Review B 92, 085105 (2015).
  28. L. Gioia and C. Wang, Phys. Rev. X 12, 031007 (2022).
  29. C. L. Kane and E. J. Mele, Physical review letters 95, 226801 (2005).
  30. L. Fu and C. L. Kane, Physical Review B 76, 045302 (2007).
  31. S. Coh and D. Vanderbilt, Phys. Rev. Lett. 102, 107603 (2009).
  32. Y. Fang and J. Cano, Physical Review B 103, 165109 (2021).
  33. P. Rao and B. Bradlyn, Physical Review B 107, 195153 (2023).
  34. M. Lin and T. L. Hughes, Physical Review B 98, 241103 (2018).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: