Papers
Topics
Authors
Recent
2000 character limit reached

Agnostic Phase Estimation (2403.00054v3)

Published 29 Feb 2024 in quant-ph, cond-mat.mes-hall, and physics.atom-ph

Abstract: The goal of quantum metrology is to improve measurements' sensitivities by harnessing quantum resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the measurement setup's sensitivity. In studies of fundamental limits on metrology, a paradigmatic setup features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal quantum Fisher information about the rotation if the spin begins in a state that maximizes the variance of the rotation-inducing operator. If the rotation axis is unknown, however, no optimal single-qubit sensor can be prepared. Inspired by simulations of closed timelike curves, we circumvent this limitation. We obtain the maximum quantum Fisher information about a rotation angle, regardless of the unknown rotation axis. To achieve this result, we initially entangle the probe qubit with an ancilla qubit. Then, we measure the pair in an entangled basis, obtaining more information about the rotation angle than any single-qubit sensor can achieve. We demonstrate this metrological advantage using a two-qubit superconducting quantum processor. Our measurement approach achieves a quantum advantage, outperforming every entanglement-free strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994a).
  2. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Physical review letters 96, 010401 (2006a).
  3. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature photonics 5, 222 (2011a).
  4. A. Y. Kitaev,  (1995), arXiv:quant-ph/9511026 .
  5. I. L. Chuang and M. A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box, Journal of Modern Optics 44, 2455 (1997), https://www.tandfonline.com/doi/pdf/10.1080/09500349708231894 .
  6. G. M. D’Ariano and P. Lo Presti, Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation, Phys. Rev. Lett. 86, 4195 (2001a).
  7. X. Song, M. Naghiloo, and K. Murch, Quantum process inference for a single-qubit maxwell demon, Physical Review A 104, 10.1103/physreva.104.022211 (2021).
  8. D. R. M. Arvidsson-Shukur, A. G. McConnell, and N. Yunger Halpern, Nonclassical advantage in metrology established via quantum simulations of hypothetical closed timelike curves, Phys. Rev. Lett. 131, 150202 (2023).
  9. K. Gödel, An example of a new type of cosmological solutions of einstein’s field equations of gravitation, Rev. Mod. Phys. 21, 447 (1949).
  10. C. H. Bennett, in Proceedings of QUPON (Wien, 2005).
  11. G. Svetlichny, Time travel: Deutsch vs. teleportation, International Journal of Theoretical Physics 50, 3903 (2011).
  12. C. W. Helstrom, Quantum Detection and Estimation Theory, Vol. 123 (Elsevier, 1976) 1st Edition.
  13. T. A. Brun and M. M. Wilde, Simulations of closed timelike curves, Foundations of Physics 47, 375 (2017).
  14. J.-M. A. Allen, Treating time travel quantum mechanically, Phys. Rev. A 90, 042107 (2014).
  15. J. H. Jenne and D. R. M. Arvidsson-Shukur, Unbounded and lossless compression of multiparameter quantum information, Phys. Rev. A 106, 042404 (2022).
  16. The FI’s weak sinusoidal variation results from experimental imperfections.
  17. G. M. D’Ariano and P. Lo Presti, Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation, Phys. Rev. Lett. 86, 4195 (2001b).
  18. C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
  19. T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91, 217905 (2003).
  20. J. G. Smith, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur, Iterative quantum-phase-estimation protocol for shallow circuits, Phys. Rev. A 106, 062615 (2022).
  21. J. G. Smith, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur, An adaptive bayesian quantum algorithm for phase estimation (2023), arXiv:2303.01517 [quant-ph] .
  22. J. Harris, R. W. Boyd, and J. S. Lundeen, Weak value amplification can outperform conventional measurement in the presence of detector saturation, Phys. Rev. Lett. 118, 070802 (2017).
  23. S. Pang, J. Dressel, and T. A. Brun, Entanglement-assisted weak value amplification, Phys. Rev. Lett. 113, 030401 (2014a).
  24. Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
  25. I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, The sense in which a ”weak measurement” of a spin-1/2 particle’s spin component yields a value 100, Phys. Rev. D 40, 2112 (1989).
  26. O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements, Science 319, 787 (2008), https://www.science.org/doi/pdf/10.1126/science.1152697 .
  27. M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Physical Review A 79, 10.1103/physreva.79.013819 (2009).
  28. J. Rapin and O. Teytaud, Nevergrad - A gradient-free optimization platform, https://GitHub.com/FacebookResearch/Nevergrad (2018).
  29. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2012).
  30. M. G. A. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 7, 125 (2009).
  31. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photon. 5, 222 (2011b).
  32. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006b).
  33. H. Cramer, Mathematical Methods of Statistics (Princeton University Press, 1999).
  34. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994b).
  35. A. Fujiwara and H. Nagaoka, Quantum Fisher metric and estimation for pure state models, Phys. Lett. A 201, 119 (1995).
  36. C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231 (1969).
  37. H. Zhu, Information complementarity: A new paradigm for decoding quantum incompatibility, Scientific Reports 5, 14317 (2015).
  38. T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, Journal of Physics A: Mathematical and Theoretical 49, 123001 (2016).
  39. S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology, Physical Review A 94, 052108 (2016).
  40. A. Z. Goldberg, L. L. Sánchez-Soto, and H. Ferretti, Intrinsic sensitivity limits for multiparameter quantum metrology, Phys. Rev. Lett. 127, 110501 (2021).
  41. A. Fujiwara, Quantum channel identification problem, Phys. Rev. A 63, 042304 (2001).
  42. S. Pang, J. Dressel, and T. A. Brun, Entanglement-assisted weak value amplification, Phys. Rev. Lett. 113, 030401 (2014b).
  43. S. Pang and T. A. Brun, Improving the precision of weak measurements by postselection measurement, Phys. Rev. Lett. 115, 120401 (2015).
  44. S. Alipour and A. T. Rezakhani, Extended convexity of quantum fisher information in quantum metrology, Phys. Rev. A 91, 042104 (2015).
  45. J. Gallier, Notes on the schur complement (2010).

Summary

  • The paper introduces an agnostic phase estimation method using entangled qubits to retrieve maximal quantum Fisher information without prior knowledge of the rotation axis.
  • The proposed protocol achieves a 50% boost in QFI, validated on a two-qubit superconducting processor, outperforming traditional single-qubit sensors.
  • This approach expands quantum metrology by enabling optimal phase measurements in systems with hidden parameters, paving the way for advanced quantum sensing applications.

Agnostic Phase Estimation: An Overview

The paper, "Agnostic Phase Estimation," presents a novel approach in quantum metrology to enhance phase estimation without prior knowledge of the rotation axis. Quantum metrology aims to improve measurement sensitivities by utilizing quantum resources, with a common goal of maximizing the quantum Fisher information (QFI). This paper addresses a significant challenge in metrology: estimating an unknown rotation angle in a qubit system when the rotation axis is also unknown. Conventionally, achieving maximal QFI requires knowledge about the system's parameters, including the rotation axis. This paper proposes an innovative method inspired by theoretical simulations of closed timelike curves (CTCs) to circumvent this requirement, thus providing a strategy for optimal phase estimation in such agnostic settings.

Motivation and Methodology

The central problem addressed is the optimal estimation of a rotation angle in a qubit system when both the angle and the axis of rotation are unknown. Traditionally, maximizing QFI necessitates knowing these parameters, where the optimal single-qubit sensor state maximizes the variance of the rotation-inducing operator. However, if the axis is unknown, preparing such an optimal state is unfeasible. The authors propose an alternative approach by initially entangling the probe qubit with an ancilla. By measuring this entangled pair in a specific basis, they claim to retrieve more information about the rotation angle than any single-qubit sensor can. This method allows achieving the maximal quantum Fisher information about the rotation angle, effectively outperforming entanglement-free strategies.

Experimental Validation

The authors validate their theoretical claims through experimentation on a two-qubit superconducting quantum processor. They demonstrate that their proposed measurement approach confers a metrological advantage, superior to classical strategies that rely on single-qubit sensors without entanglement. The experiments revealed that entanglement manipulation enables the retrieval of significant information about the rotation angle, even when the axis remains unknown.

Results and Implications

The paper's results show that the proposed protocol achieves a QFI boost of 50% compared to strategies that do not utilize entanglement. Specifically, the experimental setup attains an average QFI of approximately 0.82, close to the theoretical maximum of 1. Additionally, the agnostic sensing approach using entangled measurements demonstrates the capability of measuring phase optimally without prior or subsequent knowledge of the rotation axis. This insight is crucial for metrological applications where traditional assumptions about the unitary operators are unreliable or unavailable.

Future Directions

The implications of this research are noteworthy in both theoretical and practical realms. Practically, the techniques presented could advance quantum sensing technologies, critical for fields like quantum computing and communications. Theoretically, these findings open avenues for exploring similar strategies in systems where parameters of interest are hidden or not directly measurable. Furthermore, the link to closed timelike curves presents an intriguing foundational question about the nature of time and information flow in quantum mechanics, suggesting potential exploration into quantum information processing paradigms that leverage this relationship.

This paper provides a significant step forward in quantum metrology by pushing the boundaries of phase estimation under uncertain or agnostic conditions. It showcases the power and potential of quantum entanglement as a resource for enhancing measurement precision, suggesting that future metrological studies could benefit from similar approaches, broadening the scope and applicability of quantum technologies.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 53 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com