Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Anomalous contribution to galactic rotation curves due to stochastic spacetime (2402.19459v3)

Published 29 Feb 2024 in gr-qc, astro-ph.GA, and hep-th

Abstract: We consider a proposed alternative to quantum gravity, in which the spacetime metric is treated as classical, even while matter fields remain quantum. Consistency of the theory necessarily requires that the metric evolve stochastically. Here, we show that this stochastic behaviour leads to a modification of general relativity at low accelerations. In the low acceleration regime, the variance in the acceleration produced by the gravitational field is high in comparison to that produced by the Newtonian potential, and can act as an entropic force, causing a deviation from Einstein's theory of general relativity. We show that in this "diffusion regime", the entropic force acts from a gravitational point of view, as if it were a contribution to the matter distribution. We compute modifications to the expectation value of the metric via the path integral formalism, and find an anomalous contribution which corresponds to a cosmological constant, anti-correlated with a contribution which has been used to fit galactic rotation curves without dark matter. We caution that a greater understanding of this effect is needed before conclusions can be drawn, most likely through numerical simulations, and provide a template for computing the deviation from general relativity which serves as an experimental signature of the Brownian motion of spacetime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological parameters from observations of galaxy clusters, Annual Review of Astronomy and Astrophysics 49, 409 (2011).
  2. C. J. Conselice, The evolution of galaxy structure over cosmic time, Annual Review of Astronomy and Astrophysics 52, 291–337 (2014).
  3. R. B. Tully and J. R. Fisher, A New method of determining distances to galaxies, Astron. Astrophys. 54, 661 (1977).
  4. R. H. Sanders and S. S. McGaugh, Modified newtonian dynamics as an alternative to dark matter, Annual Review of Astronomy and Astrophysics 40, 263 (2002).
  5. J. D. Bekenstein, The modified newtonian dynamics—mond and its implications for new physics, Contemporary Physics 47, 387 (2006).
  6. M. Milgrom, The mond paradigm, arXiv preprint arXiv:0801.3133  (2008).
  7. J. Oppenheim, A postquantum theory of classical gravity?, Physical Review X 13, 041040 (2023), arXiv:1811.03116.
  8. J. Oppenheim and Z. Weller-Davies, Covariant path integrals for quantum fields back-reacting on classical space-time, arXiv:2302.07283  (2023a).
  9. J. Oppenheim and Z. Weller-Davies, Path integrals for classical-quantum dynamics, arXiv:2301.04677  (2023b).
  10. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).
  11. A. Tilloy and L. Diósi, Sourcing semiclassical gravity from spontaneously localized quantum matter, Physical Review D 93, 024026 (2016).
  12. R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York., 1965) section 12.6 on Brownian motion.
  13. D. Dürr and A. Bach, The onsager-machlup function as lagrangian for the most probable path of a diffusion process, Communications in Mathematical Physics 60, 153 (1978).
  14. Y. Chao and J. Duan, The onsager–machlup function as lagrangian for the most probable path of a jump-diffusion process, Nonlinearity 32, 3715 (2019).
  15. R. J. Riegert, Birkhoff’s theorem in conformal gravity, Physical review letters 53, 315 (1984).
  16. P. D. Mannheim, Are galactic rotation curves really flat?, The Astrophysical Journal 479, 659 (1997).
  17. P. D. Mannheim and J. G. O’Brien, Fitting galactic rotation curves with conformal gravity and a global quadratic potential, Physical Review D 85, 124020 (2012).
  18. K. Horne, Conformal gravity rotation curves with a conformal higgs halo, Monthly Notices of the Royal Astronomical Society 458, 4122 (2016).
  19. M. Hobson and A. Lasenby, Conformal gravity does not predict flat galaxy rotation curves, Physical Review D 104, 064014 (2021).
  20. M. Hobson and A. Lasenby, Conformally-rescaled schwarzschild metrics do not predict flat galaxy rotation curves, The European Physical Journal C 82, 585 (2022).
  21. A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91, 99 (1980).
  22. A. Vilenkin, Classical and quantum cosmology of the starobinsky inflationary model, Physical Review D 32, 2511 (1985).
  23. L.-H. Liu, T. Prokopec, and A. A. Starobinsky, Inflation in an effective gravitational model and asymptotic safety, Physical Review D 98, 043505 (2018).
  24. L. Diosi, Quantum dynamics with two planck constants and the semiclassical limit, arXiv preprint quant-ph/9503023  (1995).
  25. I. Layton, J. Oppenheim, and E. Panella, Normalisation and interpretations of generalised stochastic path integrals (2023b), manuscript in preparation.
  26. J. D. Barrow and S. Hervik, The weyl tensor in spatially homogeneous cosmological models, Classical and Quantum Gravity 19, 5173 (2002).
  27. J. Oppenheim, E. Panella, and A. Pontzen, A stochastic cosmology, manuscript in preparation  (2024a).
  28. F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects, Il Nuovo Cimento A (1965-1970) 42, 390 (1966).
  29. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Physical Review A 40, 1165 (1989).
  30. R. Penrose, On gravity’s role in quantum state reduction, General relativity and gravitation 28, 581 (1996).
  31. T. Banks, M. E. Peskin, and L. Susskind, Difficulties for the evolution of pure states into mixed states, Nuclear Physics B 244, 125 (1984).
  32. D. J. Gross, Is quantum gravity unpredictable?, Nuclear Physics B 236, 349 (1984).
  33. G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Physical review D 34, 470 (1986).
  34. L. Ballentine, Failure of some theories of state reduction, Physical Review A 43, 9 (1991).
  35. A. Bassi, E. Ippoliti, and B. Vacchini, On the energy increase in space-collapse models, Journal of Physics A: Mathematical and General 38, 8017 (2005).
  36. S. L. Adler, Lower and upper bounds on csl parameters from latent image formation and igm heating, Journal of Physics A: Mathematical and Theoretical 40, 2935 (2007).
  37. K. Lochan, S. Das, and A. Bassi, Constraining continuous spontaneous localization strength parameter λ𝜆\lambdaitalic_λ from standard cosmology and spectral distortions of cosmic microwave background radiation, Physical Review D 86, 065016 (2012).
  38. S. Nimmrichter, K. Hornberger, and K. Hammerer, Optomechanical sensing of spontaneous wave-function collapse, Physical review letters 113, 020405 (2014).
  39. M. Bahrami, A. Bassi, and H. Ulbricht, Testing the quantum superposition principle in the frequency domain, Physical Review A 89, 032127 (2014a).
  40. F. Laloë, W. J. Mullin, and P. Pearle, Heating of trapped ultracold atoms by collapse dynamics, Physical Review A 90, 052119 (2014).
  41. D. Goldwater, M. Paternostro, and P. Barker, Testing wave-function-collapse models using parametric heating of a trapped nanosphere, Physical Review A 94, 010104 (2016).
  42. A. Tilloy and T. M. Stace, Neutron star heating constraints on wave-function collapse models, Physical Review Letters 123, 080402 (2019).
  43. A. Tilloy and L. Diósi, Principle of least decoherence for newtonian semiclassical gravity, Physical Review D 96, 104045 (2017).
  44. C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Physical review letters 119, 240402 (2017).
  45. L. Lami, J. S. Pedernales, and M. B. Plenio, Testing the quantumness of gravity without entanglement, arXiv preprint arXiv:2302.03075  (2023).
  46. S. Kryhin and V. Sudhir, Distinguishable consequence of classical gravity on quantum matter, arXiv preprint arXiv:2309.09105  (2023).
  47. D. Carney, P. C. Stamp, and J. M. Taylor, Tabletop experiments for quantum gravity: a user’s manual, Classical and Quantum Gravity 36, 034001 (2019).
  48. I. Layton and J. Oppenheim, The classical-quantum limit, arXiv preprint arXiv:2310.18271  (2023).
  49. Postquantum soup (2023), jonathan Oppenheim et. al. unpublished note.
  50. P. Blanchard and A. Jadczyk, On the interaction between classical and quantum systems, Physics Letters A 175, 157 (1993).
  51. P. Blanchard and A. Jadczyk, Event-enhanced quantum theory and piecewise deterministic dynamics, Annalen der Physik 507, 583 (1995), https://arxiv.org/abs/hep-th/9409189.
  52. J. Oppenheim and Z. Weller-Davies, The constraints of post-quantum classical gravity, Journal of High Energy Physics 2022, 1 (2022).
  53. J. Oppenheim, The constraints of a continuous realisation of hybrid classical-quantum gravity, manuscript in preparation.
  54. D. Kafri, J. Taylor, and G. Milburn, A classical channel model for gravitational decoherence, New Journal of Physics 16, 065020 (2014).
  55. I. Layton, J. Oppenheim, and Z. Weller-Davies, A healthier semi-classical dynamics (2022).
  56. J. Oppenheim, A. Russo, and Z. Weller-Davies, Diffeomorphism invariant classical-quantum path integrals for nordstrom gravity,  (2024b), arXiv:2401.05514 [gr-qc] .
  57. B. S. DeWitt, Quantum theory of gravity. i. the canonical theory, Physical Review 160, 1113–1148 (1967).
  58. D. Giulini and C. Kiefer, Wheeler-dewitt metric and the attractivity of gravity, Physics Letters A 193, 21–24 (1994).
  59. K. S. Stelle, Renormalization of higher-derivative quantum gravity, Physical Review D 16, 953 (1977).
  60. K. Stelle, Classical gravity with higher derivatives, General Relativity and Gravitation 9, 353 (1978).
  61. A. Salvio, Quadratic gravity, Frontiers in Physics  (2018).
  62. J. F. Donoghue and G. Menezes, On quadratic gravity, arXiv preprint arXiv:2112.01974  (2021).
  63. B. L. Hu and E. Verdaguer, Stochastic gravity: Theory and applications, Living Reviews in Relativity 11, 3 (2008).
  64. J. Moffat, Stochastic gravity, Physical Review D 56, 6264 (1997).
  65. C. M. Will, Theory and Experiment in Gravitational Physics, 2nd ed. (Cambridge University Press, 2018).
  66. C. M. Will, On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics, Proc. Nat. Acad. Sci. 108, 5938 (2011), arXiv:1102.5192 [gr-qc] .
  67. R. M. Neumann, The entropy of a single gaussian macromolecule in a noninteracting solvent, The Journal of Chemical Physics 66, 870 (1977).
  68. N. Roos, Entropic forces in brownian motion, American Journal of Physics 82, 1161 (2014).
  69. K. Jacobs, Twenty open problems in quantum control (2014), arXiv:1304.0819 [quant-ph] .
  70. T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Reports on Progress in Physics 73, 046901 (2010).
  71. E. Verlinde, On the origin of gravity and the laws of newton, Journal of High Energy Physics 2011, 1 (2011).
  72. M. Visser, Conservative entropic forces, Journal of High Energy Physics 2011, 1 (2011).
  73. M. Van Raamsdonk, Building up space–time with quantum entanglement, International Journal of Modern Physics D 19, 2429 (2010).
  74. H. Risken and H. Risken, Fokker-planck equation (Springer, 1996).
Citations (5)

Summary

  • The paper proposes that stochastic fluctuations in the spacetime metric yield entropic forces that alter gravity, potentially explaining galactic rotation curves without dark matter.
  • Using path integral methods, the authors compute effective contributions that mimic a small cosmological constant and produce MOND-like behavior at low accelerations.
  • The study provides a testable framework that reconciles gravitational discrepancies and suggests new experimental targets for astrophysical observations.

Implications of Stochastic Spacetime on Galactic Rotation Curves

The paper by Oppenheim and Russo challenges conventional understanding of gravity by proposing that spacetime may inherently possess stochastic, rather than deterministic, dynamics. Their hypothesis stems from an alternative approach to quantum gravity where the spacetime metric is treated as classical, but evolving stochastically, while matter fields remain quantum. This conceptual shift leads to significant modifications in the classical theory of general relativity, particularly in regimes of low acceleration.

Theoretical Foundation

The authors present a framework where stochastic behaviors in the spacetime metric can induce an entropic force significant enough to alter traditional gravitational predictions at low acceleration scales. In this framework, the variance in acceleration due to gravitational fields can manifest as an effective matter distribution. Through the path integral formalism, they compute expectation values of the metric and identify stochastic contributions akin to a cosmological constant. Interestingly, these contributions show an inverse correlation with a term historically proposed as a fit for galactic rotation curves without invoking dark matter.

Numerical Insights

Key numerical insights from the paper reveal that even when a bare cosmological constant is set to zero, stochastic fluctuations lead to the emergence of a small cosmological constant term. The paper demonstrates that these fluctuations can induce a gravitational force in line with Modified Newtonian Dynamics (MOND) behaviors. The findings correlate with observational coincidences such as Milgrom's observation relating the MOND acceleration scale to the cosmological constant, albeit the theory does not precisely predict these coincidences.

Practical & Theoretical Implications

The implications of this work are manifold:

  1. Reinterpretation of Dark Matter: By offering an explanation for galactic rotation curves without relying on dark matter, the paper suggests paths for reconciling galactic dynamics through modifications of gravity rather than introducing unseen matter constituents.
  2. Alternative Cosmological Constant: It proposes a mechanism for explaining the small, non-zero cosmological constant through stochastic spacetime dynamics rather than a fundamental constant of nature, potentially resolving the long-standing cosmological constant problem.
  3. Astrophysical and Cosmological Tests: The paper provides a quantitative framework that can be tested against astronomical observations. The characteristic stochastic contributions serve as experimental signatures potentially distinguishable from dark matter effects.
  4. Acceleration Scale in Gravity: The paper identifies a diffusion regime where traditional gravitational laws modify, providing a natural acceleration scale that aligns with MOND phenomenology — a critical area of examination for contemporary astrophysics.
  5. Path Integral Approach to Stochastic Gravity: The reliance on a path integral formulation underscores an advanced methodological shift, allowing for stochastic effects which could be pivotal in unifying gravity with quantum mechanics.

Speculation on Future Developments

Future explorations could involve numerical simulations to elucidate the full implications of the theory. The authors suggest that understanding the effect of stochastic spacetime on large scale cosmic structures and galaxy formation is essential. Moreover, mapping out the exact contribution of stochastic forces relative to established dark matter models remains a significant frontier.

Conclusively, this paper offers profound insights into gravitational theory by suggesting that inherent stochasticity in spacetime might play a crucial role in celestial dynamics, challenging established paradigms of dark energy and dark matter. The theoretical architecture provided by this paper opens new avenues for scientific inquiry and experimental verification in the quest to comprehend the universe's gravitational underpinnings.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 46 tweets and received 88 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com