Anomalous contribution to galactic rotation curves due to stochastic spacetime (2402.19459v3)
Abstract: We consider a proposed alternative to quantum gravity, in which the spacetime metric is treated as classical, even while matter fields remain quantum. Consistency of the theory necessarily requires that the metric evolve stochastically. Here, we show that this stochastic behaviour leads to a modification of general relativity at low accelerations. In the low acceleration regime, the variance in the acceleration produced by the gravitational field is high in comparison to that produced by the Newtonian potential, and can act as an entropic force, causing a deviation from Einstein's theory of general relativity. We show that in this "diffusion regime", the entropic force acts from a gravitational point of view, as if it were a contribution to the matter distribution. We compute modifications to the expectation value of the metric via the path integral formalism, and find an anomalous contribution which corresponds to a cosmological constant, anti-correlated with a contribution which has been used to fit galactic rotation curves without dark matter. We caution that a greater understanding of this effect is needed before conclusions can be drawn, most likely through numerical simulations, and provide a template for computing the deviation from general relativity which serves as an experimental signature of the Brownian motion of spacetime.
- S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological parameters from observations of galaxy clusters, Annual Review of Astronomy and Astrophysics 49, 409 (2011).
- C. J. Conselice, The evolution of galaxy structure over cosmic time, Annual Review of Astronomy and Astrophysics 52, 291–337 (2014).
- R. B. Tully and J. R. Fisher, A New method of determining distances to galaxies, Astron. Astrophys. 54, 661 (1977).
- R. H. Sanders and S. S. McGaugh, Modified newtonian dynamics as an alternative to dark matter, Annual Review of Astronomy and Astrophysics 40, 263 (2002).
- J. D. Bekenstein, The modified newtonian dynamics—mond and its implications for new physics, Contemporary Physics 47, 387 (2006).
- M. Milgrom, The mond paradigm, arXiv preprint arXiv:0801.3133 (2008).
- J. Oppenheim, A postquantum theory of classical gravity?, Physical Review X 13, 041040 (2023), arXiv:1811.03116.
- J. Oppenheim and Z. Weller-Davies, Covariant path integrals for quantum fields back-reacting on classical space-time, arXiv:2302.07283 (2023a).
- J. Oppenheim and Z. Weller-Davies, Path integrals for classical-quantum dynamics, arXiv:2301.04677 (2023b).
- L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).
- A. Tilloy and L. Diósi, Sourcing semiclassical gravity from spontaneously localized quantum matter, Physical Review D 93, 024026 (2016).
- R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York., 1965) section 12.6 on Brownian motion.
- D. Dürr and A. Bach, The onsager-machlup function as lagrangian for the most probable path of a diffusion process, Communications in Mathematical Physics 60, 153 (1978).
- Y. Chao and J. Duan, The onsager–machlup function as lagrangian for the most probable path of a jump-diffusion process, Nonlinearity 32, 3715 (2019).
- R. J. Riegert, Birkhoff’s theorem in conformal gravity, Physical review letters 53, 315 (1984).
- P. D. Mannheim, Are galactic rotation curves really flat?, The Astrophysical Journal 479, 659 (1997).
- P. D. Mannheim and J. G. O’Brien, Fitting galactic rotation curves with conformal gravity and a global quadratic potential, Physical Review D 85, 124020 (2012).
- K. Horne, Conformal gravity rotation curves with a conformal higgs halo, Monthly Notices of the Royal Astronomical Society 458, 4122 (2016).
- M. Hobson and A. Lasenby, Conformal gravity does not predict flat galaxy rotation curves, Physical Review D 104, 064014 (2021).
- M. Hobson and A. Lasenby, Conformally-rescaled schwarzschild metrics do not predict flat galaxy rotation curves, The European Physical Journal C 82, 585 (2022).
- A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91, 99 (1980).
- A. Vilenkin, Classical and quantum cosmology of the starobinsky inflationary model, Physical Review D 32, 2511 (1985).
- L.-H. Liu, T. Prokopec, and A. A. Starobinsky, Inflation in an effective gravitational model and asymptotic safety, Physical Review D 98, 043505 (2018).
- L. Diosi, Quantum dynamics with two planck constants and the semiclassical limit, arXiv preprint quant-ph/9503023 (1995).
- I. Layton, J. Oppenheim, and E. Panella, Normalisation and interpretations of generalised stochastic path integrals (2023b), manuscript in preparation.
- J. D. Barrow and S. Hervik, The weyl tensor in spatially homogeneous cosmological models, Classical and Quantum Gravity 19, 5173 (2002).
- J. Oppenheim, E. Panella, and A. Pontzen, A stochastic cosmology, manuscript in preparation (2024a).
- F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects, Il Nuovo Cimento A (1965-1970) 42, 390 (1966).
- L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Physical Review A 40, 1165 (1989).
- R. Penrose, On gravity’s role in quantum state reduction, General relativity and gravitation 28, 581 (1996).
- T. Banks, M. E. Peskin, and L. Susskind, Difficulties for the evolution of pure states into mixed states, Nuclear Physics B 244, 125 (1984).
- D. J. Gross, Is quantum gravity unpredictable?, Nuclear Physics B 236, 349 (1984).
- G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Physical review D 34, 470 (1986).
- L. Ballentine, Failure of some theories of state reduction, Physical Review A 43, 9 (1991).
- A. Bassi, E. Ippoliti, and B. Vacchini, On the energy increase in space-collapse models, Journal of Physics A: Mathematical and General 38, 8017 (2005).
- S. L. Adler, Lower and upper bounds on csl parameters from latent image formation and igm heating, Journal of Physics A: Mathematical and Theoretical 40, 2935 (2007).
- K. Lochan, S. Das, and A. Bassi, Constraining continuous spontaneous localization strength parameter λ𝜆\lambdaitalic_λ from standard cosmology and spectral distortions of cosmic microwave background radiation, Physical Review D 86, 065016 (2012).
- S. Nimmrichter, K. Hornberger, and K. Hammerer, Optomechanical sensing of spontaneous wave-function collapse, Physical review letters 113, 020405 (2014).
- M. Bahrami, A. Bassi, and H. Ulbricht, Testing the quantum superposition principle in the frequency domain, Physical Review A 89, 032127 (2014a).
- F. Laloë, W. J. Mullin, and P. Pearle, Heating of trapped ultracold atoms by collapse dynamics, Physical Review A 90, 052119 (2014).
- D. Goldwater, M. Paternostro, and P. Barker, Testing wave-function-collapse models using parametric heating of a trapped nanosphere, Physical Review A 94, 010104 (2016).
- A. Tilloy and T. M. Stace, Neutron star heating constraints on wave-function collapse models, Physical Review Letters 123, 080402 (2019).
- A. Tilloy and L. Diósi, Principle of least decoherence for newtonian semiclassical gravity, Physical Review D 96, 104045 (2017).
- C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Physical review letters 119, 240402 (2017).
- L. Lami, J. S. Pedernales, and M. B. Plenio, Testing the quantumness of gravity without entanglement, arXiv preprint arXiv:2302.03075 (2023).
- S. Kryhin and V. Sudhir, Distinguishable consequence of classical gravity on quantum matter, arXiv preprint arXiv:2309.09105 (2023).
- D. Carney, P. C. Stamp, and J. M. Taylor, Tabletop experiments for quantum gravity: a user’s manual, Classical and Quantum Gravity 36, 034001 (2019).
- I. Layton and J. Oppenheim, The classical-quantum limit, arXiv preprint arXiv:2310.18271 (2023).
- Postquantum soup (2023), jonathan Oppenheim et. al. unpublished note.
- P. Blanchard and A. Jadczyk, On the interaction between classical and quantum systems, Physics Letters A 175, 157 (1993).
- P. Blanchard and A. Jadczyk, Event-enhanced quantum theory and piecewise deterministic dynamics, Annalen der Physik 507, 583 (1995), https://arxiv.org/abs/hep-th/9409189.
- J. Oppenheim and Z. Weller-Davies, The constraints of post-quantum classical gravity, Journal of High Energy Physics 2022, 1 (2022).
- J. Oppenheim, The constraints of a continuous realisation of hybrid classical-quantum gravity, manuscript in preparation.
- D. Kafri, J. Taylor, and G. Milburn, A classical channel model for gravitational decoherence, New Journal of Physics 16, 065020 (2014).
- I. Layton, J. Oppenheim, and Z. Weller-Davies, A healthier semi-classical dynamics (2022).
- J. Oppenheim, A. Russo, and Z. Weller-Davies, Diffeomorphism invariant classical-quantum path integrals for nordstrom gravity, (2024b), arXiv:2401.05514 [gr-qc] .
- B. S. DeWitt, Quantum theory of gravity. i. the canonical theory, Physical Review 160, 1113–1148 (1967).
- D. Giulini and C. Kiefer, Wheeler-dewitt metric and the attractivity of gravity, Physics Letters A 193, 21–24 (1994).
- K. S. Stelle, Renormalization of higher-derivative quantum gravity, Physical Review D 16, 953 (1977).
- K. Stelle, Classical gravity with higher derivatives, General Relativity and Gravitation 9, 353 (1978).
- A. Salvio, Quadratic gravity, Frontiers in Physics (2018).
- J. F. Donoghue and G. Menezes, On quadratic gravity, arXiv preprint arXiv:2112.01974 (2021).
- B. L. Hu and E. Verdaguer, Stochastic gravity: Theory and applications, Living Reviews in Relativity 11, 3 (2008).
- J. Moffat, Stochastic gravity, Physical Review D 56, 6264 (1997).
- C. M. Will, Theory and Experiment in Gravitational Physics, 2nd ed. (Cambridge University Press, 2018).
- C. M. Will, On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics, Proc. Nat. Acad. Sci. 108, 5938 (2011), arXiv:1102.5192 [gr-qc] .
- R. M. Neumann, The entropy of a single gaussian macromolecule in a noninteracting solvent, The Journal of Chemical Physics 66, 870 (1977).
- N. Roos, Entropic forces in brownian motion, American Journal of Physics 82, 1161 (2014).
- K. Jacobs, Twenty open problems in quantum control (2014), arXiv:1304.0819 [quant-ph] .
- T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Reports on Progress in Physics 73, 046901 (2010).
- E. Verlinde, On the origin of gravity and the laws of newton, Journal of High Energy Physics 2011, 1 (2011).
- M. Visser, Conservative entropic forces, Journal of High Energy Physics 2011, 1 (2011).
- M. Van Raamsdonk, Building up space–time with quantum entanglement, International Journal of Modern Physics D 19, 2429 (2010).
- H. Risken and H. Risken, Fokker-planck equation (Springer, 1996).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.