Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A minimal model of pan-immunity maintenance by horizontal gene transfer in the ecological dynamics of bacteria and phages (2402.19388v2)

Published 29 Feb 2024 in q-bio.PE

Abstract: Bacteria and phages have been in an ongoing arms race for billions of years. To resist phages bacteria have evolved numerous defense systems, which nevertheless are still overcome by counter-defense mechanisms of specific phages. These defense/counter-defense systems are a major element of microbial genetic diversity and have been demonstrated to propagate between strains by Horizontal Gene Transfer (HGT). It has been proposed that the totality of defense systems found in microbial communities collectively form a distributed "pan-immune" system with individual elements moving between strains via ubiquitous HGT. Here, we formulate a Lotka-Volterra type model of a bacteria/phage community interacting via a combinatorial variety of defense/counter-defense systems and show that HGT enables stable maintenance of diverse defense/counter-defense genes in the microbial pan-genome even when individual microbial strains inevitably undergo extinction. This stability requires the HGT rate to be sufficiently high to ensure that some descendant of a "dying" strain survives, thanks to the immunity acquired through HGT from the community at large, thus establishing a new strain.This mechanism of persistence for the pan-immune gene pool is fundamentally similar to the "island migration" model of ecological diversity, with genes moving between genomes instead of species migrating between islands.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. C. A. Suttle, Marine viruses—major players in the global ecosystem, Nature reviews microbiology 5, 801 (2007).
  2. Y. Otsuka and T. Yonesaki, Dmd of bacteriophage t4 functions as an antitoxin against escherichia coli lsoa and rnla toxins, Molecular microbiology 83, 669 (2012).
  3. S. Srikant, C. K. Guegler, and M. T. Laub, The evolution of a counter-defense mechanism in a virus constrains its host range, eLife 11, e79549 (2022).
  4. C. Xue and N. Goldenfeld, Coevolution maintains diversity in the stochastic “kill the winner” model, Physical review letters 119, 268101 (2017).
  5. S. Martis, Eco-evolutionary feedback can stabilize diverse predator-prey communities, bioRxiv , 2022 (2022).
  6. D. Hochhauser, A. Millman, and R. Sorek, The defense island repertoire of the escherichia coli pan-genome, PLoS genetics 19, e1010694 (2023).
  7. A. Bernheim and R. Sorek, The pan-immune system of bacteria: antiviral defence as a community resource, Nature Reviews Microbiology 18, 113 (2020).
  8. G. Bunin, Ecological communities with lotka-volterra dynamics, Physical Review E 95, 042414 (2017).
  9. W. Cui, R. Marsland III, and P. Mehta, Effect of resource dynamics on species packing in diverse ecosystems, Physical review letters 125, 048101 (2020).
  10. G. Biroli, G. Bunin, and C. Cammarota, Marginally stable equilibria in critical ecosystems, New Journal of Physics 20, 083051 (2018).
  11. A. Dobrinevski and E. Frey, Extinction in neutrally stable stochastic lotka-volterra models, Physical Review E 85, 051903 (2012).
  12. M. T. Pearce, A. Agarwala, and D. S. Fisher, Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos, Proceedings of the National Academy of Sciences 117, 14572 (2020).
  13. M. LeRoux and M. T. Laub, Toxin-antitoxin systems as phage defense elements, Annual review of microbiology 76, 21 (2022).
  14. N. S. Goel, S. C. Maitra, and E. W. Montroll, On the volterra and other nonlinear models of interacting populations, Reviews of modern physics 43, 231 (1971).
  15. E. H. Kerner, A statistical mechanics of interacting biological species, The bulletin of mathematical biophysics 19, 121 (1957).
  16. R. A. Neher and B. I. Shraiman, Statistical genetics and evolution of quantitative traits, Reviews of Modern Physics 83, 1283 (2011).
  17. C. W. Gardiner et al., Handbook of stochastic methods, Vol. 3 (springer Berlin, 1985).
  18. M. Doebeli, E. C. Jaque, and Y. Ispolatov, Boom-bust population dynamics increase diversity in evolving competitive communities, Communications Biology 4, 502 (2021).
  19. S. Maslov and K. Sneppen, Population cycles and species diversity in dynamic kill-the-winner model of microbial ecosystems, Scientific reports 7, 1 (2017).
  20. M. M. Desai and D. S. Fisher, Beneficial mutation–selection balance and the effect of linkage on positive selection, Genetics 176, 1759 (2007).
  21. R. A. Neher, B. I. Shraiman, and D. S. Fisher, Rate of adaptation in large sexual populations, Genetics 184, 467 (2010).
  22. R. A. Neher, C. A. Russell, and B. I. Shraiman, Predicting evolution from the shape of genealogical trees, Elife 3, e03568 (2014).
  23. B. J. Arnold, I.-T. Huang, and W. P. Hanage, Horizontal gene transfer and adaptive evolution in bacteria, Nature Reviews Microbiology 20, 206 (2022).
  24. D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, The Journal of chemical physics 115, 1716 (2001).
  25. B. Ottino-Löffler and M. Kardar, Population extinction on a random fitness seascape, Physical Review E 102, 052106 (2020).
  26. T. Agranov and G. Bunin, Extinctions of coupled populations, and rare event dynamics under non-gaussian noise, Physical Review E 104, 024106 (2021).
  27. D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Science, 2012).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper: