Papers
Topics
Authors
Recent
2000 character limit reached

Classification of permanence and impermanence for a Lotka-Volterra model of three competing species with seasonal succession (2402.19213v1)

Published 29 Feb 2024 in math.DS

Abstract: In this paper, we are concerned with the permanence of a Lotka-Volterra model of three competing species with seasonal succession. Based on the existence of a carrying simplex, that is a globally attracting hypersurface of codimension one, we provide a complete classification of the permanence and impermanence in terms of inequalities on the parameters of this model. Moreover, we numerically show that invariant closed curves can occur in the permanent classes, which means that the positive fixed point of the associated Poincare map in the permanent classes is not always globally asymptotically stable.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.