Search for Axion dark matter with the QUAX-LNF tunable haloscope (2402.19063v3)
Abstract: We report the first experimental results obtained with the new haloscope of the QUAX experiment located at Laboratori Nazionali di Frascati of INFN (LNF). The haloscope is composed of a OFHC Cu resonant cavity cooled down to about 30 mK and immersed in a magnetic field of 8 T. The cavity frequency was varied in a 6 MHz range between 8.831496 and 8.83803 GHz. This corresponds to a previously unprobed mass range between 36.52413 and 36.5511 $\mu$eV. We don't observe any excess in the power spectrum and set limits on the axion-photon coupling in this mass range down to $g_{a\gamma\gamma} < 0.861 \times 10{-13}$ GeV${-1}$ with the confidence level set at $90\%$.
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977a).
- R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977b).
- J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).
- I. G. Irastorza and J. Redondo, Prog. Part. Nucl. Phys. 102, 89 (2018).
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
- P. Sikivie, Phys. Rev. D 32, 2988 (1985).
- N. Du et al., Phys. Rev. Lett. 120, 151301 (2018).
- C. Boutan et al., Phys. Rev. Lett. 121, 261302 (2018).
- T. Braine et al., Phys. Rev. Lett. 124, 101303 (2020).
- C. Bartram et al., Phys. Rev Lett. 127, 261803 (2021).
- L. Zhong et al., Phys. Rev. D 97, 092001 (2018).
- K. Backes et al., Nature 590, 238 (2021).
- O. Kwon et al., Phys. Rev. Lett. 126, 191802 (2021).
- C. M. Adair et al., Nature Communications 13 (2022).
- A. Álvarez Melcón et al., JCAP 05 (2018), 040.
- A. Álvarez Melcón et al., JHEP 07 (2020), 084.
- A. Álvarez Melcón et al., JHEP 10 (2021), 075.
- H. Chang et al. (TASEH Collaboration), Phys. Rev. Lett. 129, 111802 (2022).
- N. Crescini et al., Eur. Phys. J. C 78, 1 (2018).
- D. Alesini et al., Phys. Rev. D 99, 101101 (2019).
- N. Crescini et al., Phys. Rev. Lett. 124, 171801 (2020).
- D. Alesini et al., Phys. Rev. D 103, 102004 (2021).
- D. Alesini et al., Phys. Rev. D 106, 052007 (2022).
- D. Alesini et al., Phys. Dark Univ. 42, 101370 (2023).
- J. L. Ouellet et al., Phys. Rev. Lett. 122, 121802 (2019).
- L. Brouwer et al. (DMRadio Collaboration), Phys. Rev. D 106, 103008 (2022a).
- L. Brouwer et al. (DMRadio Collaboration), Phys. Rev. D 106, 112003 (2022b).
- B. Aja et al., JCAP 2022 (11), 044.
- A. Caldwell et al., Phys. Rev. Lett. 118, 091801 (2017).
- B. M. Brubaker et al., Phys. Rev. Lett. 118, 061302 (2017).
- P. A. Zyla et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 10.1093/ptep/ptaa104 (2020), 083C01, https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf .
- M. S. Turner, Phys. Rev. D 42, 3572 (1990).
- ANSYS HFSS software, https://www.ansys.com/products/electronics/ansys-hfss.
- A. Savitzky and M. J. Golay, Anal. Chem. 36, 1627 (1964).
- R. H. Dicke, in Classics in Radio Astronomy (Springer, Dordrecht, 1946) pp. 106–113.
- C. O’Hare, cajohare/axionlimits: Axionlimits, https://cajohare.github.io/AxionLimits/ (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.