Kodama-like Vector Fields in Axisymmetric Spacetimes (2402.18993v2)
Abstract: We extend the concept of the Kodama symmetry, a quasi-local time translation symmetry for dynamical spherically symmetric spacetimes, to a specific class of dynamical axisymmetric spacetimes, namely the families of Kerr-Vaidya and Kerr-Vaidya-de Sitter spacetimes. We study some geometrical properties of the asymptotically flat Kerr-Vaidya metric, such as the Brown-York mass and the Einstein tensor. Furthermore, we propose a generalization of the Kerr-Vaidya metric to an asymptotic de Sitter background. We show that for these classes of dynamical axisymmetric black hole spacetimes, there exists a timelike vector field that exhibits similar properties to the Kodama vector field in spherical symmetry. This includes the construction of a covariantly conserved current and a corresponding locally conserved charge, which in the Kerr-Vaidya case converges to the Brown-York mass in the asymptotically flat region.
- R. Narayan and E. Quataert. Black hole accretion. Science, 307:77–80, 2005.
- S. W. Hawking. Particle creation by black holes. Commun. Math. Phys., 43:199–220, 1975.
- W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14:870–892, 1976.
- D. N. Page. Hawking radiation and black hole thermodynamics. New Journal of Physics, 7(1):203, 2005.
- Quantum (dis)charge of black hole interiors. Phys. Rev. Lett., 127:231301, 2021.
- D. W. Janssen and R. Verch. Hadamard states on spherically symmetric characteristic surfaces, the semi-classical Einstein equations and the Hawking effect. Class. Quantum Grav., 40:045002, 2023.
- S. A. Hayward. General laws of black-hole dynamics. Phys. Rev. D, 49:6467–6474, 1994.
- H. Kodama. Conserved energy flux for the spherically symmetric system and the backreaction problem in the black hole evaporation. Prog. Theor. Phys., 63:1217–1228, 1980.
- G. Abreu and M. Visser. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D, 82:044027, 2010.
- I. Rácz. On the use of the Kodama vector field in spherically symmetric dynamical problems. Class. Quantum Grav., 23:115–123, 2006.
- E. D’Angelo. Entropy for spherically symmetric, dynamical black holes from the relative entropy between coherent states of a scalar quantum field. Class. Quantum Grav., 38:175001, 2021.
- Temperature and entropy-area relation of quantum matter near spherically symmetric outer trapping horizons. Lett. Math. Phys., 111(110), 2021.
- Kerr-Vaidya black holes. Phys. Rev. D, 102:124032, 2020.
- P. K. Dahal. Trapped region in Kerr-Vaidya space-time. J. Astrophys. Astron., 42(48), 2021.
- Black hole models II: Kerr-Vaidya solutions. arXiv preprint, (arXiv:2311.02981), 2023.
- Note on the Kerr spinning-particle metric. J. Math. Phys., 6:915–917, 1965.
- E. T. Newman and R. Penrose. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3:566–578, 1962.
- P. C. Vaidya. ’Newtonian’ time in general relativity. Nature, 171:260–261, 1953.
- Radiating Kerr-Newman metric. J. Math. Phys., 20:837–843, 1979.
- L. Herrera and J. Jiménez. The complexification of a nonrotating sphere: An extension of the newman–janis algorithm. J. Math.Phys., 23:2339–2345, 1982.
- Maximal analytic extension of the Kerr metric. J. Math. Phys., 8:265–281, 1967.
- E. Poisson. A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004.
- Semiclassical black holes and horizon singularities. AVS Quantum Sci., 4:015606, 2022.
- Black holes and their horizons in semiclassical and modified theories of gravity. Int. J. Mod. Phys. D, 31(09):2230015, 2022.
- Wolfram Research, Inc. Mathematica, Version 13.0, 2023.
- xAct: Efficient tensor computer algebra for Mathematica (www.xact.es), 2002–2022.
- J. M. Martín-García. xPerm: Fast index canonicalization for tensor computer algebra. Comp. Phys. Commun., 179:597–603, 2008.
- J. M. Martín-García. xTensor: Fast abstract tensor computer algebra (www.xact.es/xTensor), 2002–2020.
- J. M. Martín-García and D. Yllanes. xCoba: General component tensor computer algebra (www.xact.es/xCoba), 2005–2020.
- The Large Scale Structure of Space-Time. Cambridge University Press, 1973.
- P. Martín-Moruno and M. Visser. Classical and Semi-classical Energy Conditions. In Wormholes, Warp Drives and Energy Conditions. Edited by F. S. N. Lobo, pages 193–213. Springer International Publishing, 2017.
- P. Martín-Moruno and M. Visser. Hawking–Ellis type III spacetime geometry. Class. Quantum Grav., 35:185004, 2018.
- Realizations of type III stress-energy tensors of the Hawking-Ellis classification in scalar-tensor gravity. Phys. Rev. D, 108:084047, 2023.
- Information recovery from evaporating rotating charged black holes. In The Sixteenth Marcel Grossmann Meeting, pages 1212–1222, 2023.
- V. Faraoni. Cosmological and Black Hole Apparent Horizons. Springer International Publishing, 2015.
- J. M. M. Senovilla and R. Torres. Corrigendum: Particle production from marginally trapped surfaces of general spacetimes. Class. Quantum Grav., 32:189501, 2015.
- R. M. Wald. General Relativity. The University of Chicago Press, 1984.
- S. A. Hayward. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Grav., 15:3147–3162, 1998.
- S. A. Hayward. Gravitational energy in spherical symmetry. Phys. Rev. D, 53:1938–1949, 1996.
- S. Kinoshita. Extension of Kodama vector and quasilocal quantities in three-dimensional axisymmetric spacetimes. Phys. Rev. D, 103:124042, 2021.
- Gravitation. W. H. Freeman and Company, 1973.
- S. M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2004.
- A. Komar. Covariant conservation laws in general relativity. Phys. Rev., 113:934–936, 1959.
- D. N. Vollick. On the meaning of various mass definitions for asymptotically flat spacetimes. Can. J. Phys., 101:9–16, 2023.
- S. Akcay and R. A. Matzner. The Kerr–de Sitter universe. Class. Quantum Grav., 28:085012, 2011.
- K. Lake and T. Zannias. Global structure of Kerr–de Sitter spacetimes. Phys. Rev. D, 92:084003, 2015.
- J. Borthwick. Maximal Kerr–de Sitter spacetimes. Class. Quantum Grav., 35:215006, 2018.
- S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, 1972.
- Entropy of Kerr–de Sitter black hole. Nucl. Phys. B, 920:211–220, 2017.
- Asymptotics with a positive cosmological constant: I. Basic framework. Class. Quantum Grav., 32:025004, 2015.
- S. Mukohyama and S. A. Hayward. Quasi-local first law of black-hole dynamics. Class. Quantum Grav., 17:2153–2157, 2000.
- Dynamical surface gravity. Class. Quantum Grav., 25:085010, 2008.
- Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D, 47:1407–1419, 1993.
- F. Pretorius and W. Israel. Quasi-spherical light cones of the Kerr geometry. Class. Quantum Grav., 15:2289, 1998.
- M. Visser. The Kerr spacetime: A brief introduction. In The Kerr spacetime: rotating black holes in General Gelativity. Edited by D. Wiltshire et al., pages 3–37. Cambridge University Press, 2009.
- Table of integrals, series, and products; 4th edition. Translated by A. Jeffrey. Academic Press, 1980.
- Spherically symmetric radiation of charge in Einstein-Maxwell theory. Gen. Rel. Grav., 1:127–130, 1970.
- Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev., 136:B571–B576, 1964.
- Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J., 143:452, 1966.
- Asymptotic flatness and Hawking quasilocal mass. Phys. Rev. D, 103:044026, 2021.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.