Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Kodama-like Vector Fields in Axisymmetric Spacetimes (2402.18993v2)

Published 29 Feb 2024 in gr-qc

Abstract: We extend the concept of the Kodama symmetry, a quasi-local time translation symmetry for dynamical spherically symmetric spacetimes, to a specific class of dynamical axisymmetric spacetimes, namely the families of Kerr-Vaidya and Kerr-Vaidya-de Sitter spacetimes. We study some geometrical properties of the asymptotically flat Kerr-Vaidya metric, such as the Brown-York mass and the Einstein tensor. Furthermore, we propose a generalization of the Kerr-Vaidya metric to an asymptotic de Sitter background. We show that for these classes of dynamical axisymmetric black hole spacetimes, there exists a timelike vector field that exhibits similar properties to the Kodama vector field in spherical symmetry. This includes the construction of a covariantly conserved current and a corresponding locally conserved charge, which in the Kerr-Vaidya case converges to the Brown-York mass in the asymptotically flat region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. R. Narayan and E. Quataert. Black hole accretion. Science, 307:77–80, 2005.
  2. S. W. Hawking. Particle creation by black holes. Commun. Math. Phys., 43:199–220, 1975.
  3. W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14:870–892, 1976.
  4. D. N. Page. Hawking radiation and black hole thermodynamics. New Journal of Physics, 7(1):203, 2005.
  5. Quantum (dis)charge of black hole interiors. Phys. Rev. Lett., 127:231301, 2021.
  6. D. W. Janssen and R. Verch. Hadamard states on spherically symmetric characteristic surfaces, the semi-classical Einstein equations and the Hawking effect. Class. Quantum Grav., 40:045002, 2023.
  7. S. A. Hayward. General laws of black-hole dynamics. Phys. Rev. D, 49:6467–6474, 1994.
  8. H. Kodama. Conserved energy flux for the spherically symmetric system and the backreaction problem in the black hole evaporation. Prog. Theor. Phys., 63:1217–1228, 1980.
  9. G. Abreu and M. Visser. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D, 82:044027, 2010.
  10. I. Rácz. On the use of the Kodama vector field in spherically symmetric dynamical problems. Class. Quantum Grav., 23:115–123, 2006.
  11. E. D’Angelo. Entropy for spherically symmetric, dynamical black holes from the relative entropy between coherent states of a scalar quantum field. Class. Quantum Grav., 38:175001, 2021.
  12. Temperature and entropy-area relation of quantum matter near spherically symmetric outer trapping horizons. Lett. Math. Phys., 111(110), 2021.
  13. Kerr-Vaidya black holes. Phys. Rev. D, 102:124032, 2020.
  14. P. K. Dahal. Trapped region in Kerr-Vaidya space-time. J. Astrophys. Astron., 42(48), 2021.
  15. Black hole models II: Kerr-Vaidya solutions. arXiv preprint, (arXiv:2311.02981), 2023.
  16. Note on the Kerr spinning-particle metric. J. Math. Phys., 6:915–917, 1965.
  17. E. T. Newman and R. Penrose. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3:566–578, 1962.
  18. P. C. Vaidya. ’Newtonian’ time in general relativity. Nature, 171:260–261, 1953.
  19. Radiating Kerr-Newman metric. J. Math. Phys., 20:837–843, 1979.
  20. L. Herrera and J. Jiménez. The complexification of a nonrotating sphere: An extension of the newman–janis algorithm. J. Math.Phys., 23:2339–2345, 1982.
  21. Maximal analytic extension of the Kerr metric. J. Math. Phys., 8:265–281, 1967.
  22. E. Poisson. A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004.
  23. Semiclassical black holes and horizon singularities. AVS Quantum Sci., 4:015606, 2022.
  24. Black holes and their horizons in semiclassical and modified theories of gravity. Int. J. Mod. Phys. D, 31(09):2230015, 2022.
  25. Wolfram Research, Inc. Mathematica, Version 13.0, 2023.
  26. xAct: Efficient tensor computer algebra for Mathematica (www.xact.es), 2002–2022.
  27. J. M. Martín-García. xPerm: Fast index canonicalization for tensor computer algebra. Comp. Phys. Commun., 179:597–603, 2008.
  28. J. M. Martín-García. xTensor: Fast abstract tensor computer algebra (www.xact.es/xTensor), 2002–2020.
  29. J. M. Martín-García and D. Yllanes. xCoba: General component tensor computer algebra (www.xact.es/xCoba), 2005–2020.
  30. The Large Scale Structure of Space-Time. Cambridge University Press, 1973.
  31. P. Martín-Moruno and M. Visser. Classical and Semi-classical Energy Conditions. In Wormholes, Warp Drives and Energy Conditions. Edited by F. S. N. Lobo, pages 193–213. Springer International Publishing, 2017.
  32. P. Martín-Moruno and M. Visser. Hawking–Ellis type III spacetime geometry. Class. Quantum Grav., 35:185004, 2018.
  33. Realizations of type III stress-energy tensors of the Hawking-Ellis classification in scalar-tensor gravity. Phys. Rev. D, 108:084047, 2023.
  34. Information recovery from evaporating rotating charged black holes. In The Sixteenth Marcel Grossmann Meeting, pages 1212–1222, 2023.
  35. V. Faraoni. Cosmological and Black Hole Apparent Horizons. Springer International Publishing, 2015.
  36. J. M. M. Senovilla and R. Torres. Corrigendum: Particle production from marginally trapped surfaces of general spacetimes. Class. Quantum Grav., 32:189501, 2015.
  37. R. M. Wald. General Relativity. The University of Chicago Press, 1984.
  38. S. A. Hayward. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Grav., 15:3147–3162, 1998.
  39. S. A. Hayward. Gravitational energy in spherical symmetry. Phys. Rev. D, 53:1938–1949, 1996.
  40. S. Kinoshita. Extension of Kodama vector and quasilocal quantities in three-dimensional axisymmetric spacetimes. Phys. Rev. D, 103:124042, 2021.
  41. Gravitation. W. H. Freeman and Company, 1973.
  42. S. M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2004.
  43. A. Komar. Covariant conservation laws in general relativity. Phys. Rev., 113:934–936, 1959.
  44. D. N. Vollick. On the meaning of various mass definitions for asymptotically flat spacetimes. Can. J. Phys., 101:9–16, 2023.
  45. S. Akcay and R. A. Matzner. The Kerr–de Sitter universe. Class. Quantum Grav., 28:085012, 2011.
  46. K. Lake and T. Zannias. Global structure of Kerr–de Sitter spacetimes. Phys. Rev. D, 92:084003, 2015.
  47. J. Borthwick. Maximal Kerr–de Sitter spacetimes. Class. Quantum Grav., 35:215006, 2018.
  48. S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, 1972.
  49. Entropy of Kerr–de Sitter black hole. Nucl. Phys. B, 920:211–220, 2017.
  50. Asymptotics with a positive cosmological constant: I. Basic framework. Class. Quantum Grav., 32:025004, 2015.
  51. S. Mukohyama and S. A. Hayward. Quasi-local first law of black-hole dynamics. Class. Quantum Grav., 17:2153–2157, 2000.
  52. Dynamical surface gravity. Class. Quantum Grav., 25:085010, 2008.
  53. Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D, 47:1407–1419, 1993.
  54. F. Pretorius and W. Israel. Quasi-spherical light cones of the Kerr geometry. Class. Quantum Grav., 15:2289, 1998.
  55. M. Visser. The Kerr spacetime: A brief introduction. In The Kerr spacetime: rotating black holes in General Gelativity. Edited by D. Wiltshire et al., pages 3–37. Cambridge University Press, 2009.
  56. Table of integrals, series, and products; 4th edition. Translated by A. Jeffrey. Academic Press, 1980.
  57. Spherically symmetric radiation of charge in Einstein-Maxwell theory. Gen. Rel. Grav., 1:127–130, 1970.
  58. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev., 136:B571–B576, 1964.
  59. Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J., 143:452, 1966.
  60. Asymptotic flatness and Hawking quasilocal mass. Phys. Rev. D, 103:044026, 2021.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: