Topological interpretation of extremal and Davies-type phase transitions of black holes
Abstract: Topological arguments are currently being used as a novel scheme to discern the properties of black holes while ignoring their detailed structure and specific field equations. Among various avenues of black hole physics, where this novel approach is being utilized, the phase transition in black hole thermodynamics lies at the forefront. There are several types of phase transition in black holes; such as the van der Waals type phase transition, Davies-type phase transition, extremal phase transition, and Hawking-Page (HP) transition. So far, the topological interpretation, where the critical point has been identified with the non-zero topological charge, has been obtained only for the van der Waals type phase transition and HP transition in different spacetimes. To complete the picture, here we provide the same interpretation for two other phase transitions: Davies-type phase transition and extremal phase transition. The entire analysis is general and is valid for any spacetime where these types of phase transitions are observed. More importantly, our analysis suggests that amid the apparent differences in these phase transitions, they share the same topological characteristics, \textit{i.e.} non-zero topological charge arising from different thermodynamic potentials in different types of phase transition.
- J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)].
- J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).
- P. C. W. Davies, “Thermodynamic Phase Transitions of Kerr-Newman Black Holes in De Sitter Space,” Class. Quant. Grav. 6, 1909 (1989).
- C. O. Lousto, “The Fourth law of black hole thermodynamics,” Nucl. Phys. B 410, 155 (1993) Erratum: [Nucl. Phys. B 449, 433 (1995)] [gr-qc/9306014].
- C. O. Lousto, “Effective two-dimensional description from critical phenomena in black holes,” Gen. Rel. Grav. 27, 121 (1995).
- C. O. Lousto, “The Emergence of an effective two-dimensional quantum description from the study of critical phenomena in black holes,” Phys. Rev. D 51, 1733 (1995) [gr-qc/9405048].
- J. P. Muniain and D. D. Piriz, “Critical behavior of dimensionally continued black holes,” Phys. Rev. D 53, 816 (1996) [gr-qc/9502029].
- S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space,” Commun. Math. Phys. 87, 577 (1983).
- A. Curir, “Rotating black holes as dissipative spin-thermodynamical systems,” Gen. Rel. Grav. 13, 417 (1981).
- A. Curir, “Black hole emissions and phase transitions ,” Gen. Rel. Grav. 13, 1177 (1981).
- D. Pavon and J. M. Rubi, “Nonequilibrium Thermodynamic Fluctuations of Black Holes,” Phys. Rev. D 37, 2052 (1988).
- D. Pavon, “Phase transition in Reissner-Nordstrom black holes,” Phys. Rev. D 43, 2495 (1991).
- O. Kaburaki, “Critical behavior of extremal Kerr-Newman black holes,” Gen. Rel. Grav. 28, 843 (1996).
- R. G. Cai, Z. J. Lu and Y. Z. Zhang, “Critical behavior in (2+1)-dimensional black holes,” Phys. Rev. D 55, 853 (1997) [gr-qc/9702032].
- R. G. Cai and J. H. Cho, “Thermodynamic curvature of the BTZ black hole,” Phys. Rev. D 60, 067502 (1999) [hep-th/9803261].
- Y. H. Wei, “Thermodynamic critical and geometrical properties of charged BTZ black hole,” Phys. Rev. D 80, 024029 (2009).
- K. Bhattacharya, S. Dey, B. R. Majhi and S. Samanta, “General framework to study the extremal phase transition of black holes,” Phys. Rev. D 99, no.12, 124047 (2019) [arXiv:1903.03434 [gr-qc]].
- D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,” Class. Quant. Grav. 26, 195011 (2009) [arXiv:0904.2765 [hep-th]].
- B. P. Dolan, “The cosmological constant and the black hole equation of state,” Class. Quant. Grav. 28, 125020 (2011) [arXiv:1008.5023 [gr-qc]].
- B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics,” Class. Quant. Grav. 28, 235017 (2011) [arXiv:1106.6260 [gr-qc]].
- B. P. Dolan, “Compressibility of rotating black holes,” Phys. Rev. D 84, 127503 (2011) [arXiv:1109.0198 [gr-qc]].
- B. P. Dolan, “Where is the PdV term in the fist law of black hole thermodynamics?,” arXiv:1209.1272 [gr-qc].
- D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes,” JHEP 1207, 033 (2012) [arXiv:1205.0559 [hep-th]].
- D. Kubiznak, R. B. Mann and M. Teo, “Black hole chemistry: thermodynamics with Lambda,” arXiv:1608.06147 [hep-th].
- K. Bhattacharya, B. R. Majhi and S. Samanta, “Van der Waals criticality in AdS black holes: a phenomenological study,” Phys. Rev. D 96, no.8, 084037 (2017) [arXiv:1709.02650 [gr-qc]].
- K. Bhattacharya, “Extended phase space thermodynamics of black holes: A study in Einstein’s gravity and beyond,” Nucl. Phys. B 989, 116130 (2023) [arXiv:2112.00938 [gr-qc]].
- H. Quevedo and A. Sanchez, “Geometric description of BTZ black holes thermodynamics,” Phys. Rev. D 79, 024012 (2009) [arXiv:0811.2524 [gr-qc]].
- M. Akbar, H. Quevedo, K. Saifullah, A. Sanchez and S. Taj, “Thermodynamic Geometry Of Charged Rotating BTZ Black Holes,” Phys. Rev. D 83, 084031 (2011) [arXiv:1101.2722 [gr-qc]].
- S. H. Hendi and R. Naderi, “Geometrothermodynamics of black holes in Lovelock gravity with a nonlinear electrodynamics,” Phys. Rev. D 91, no.2, 024007 (2015) [arXiv:1510.06269 [hep-th]].
- T. Sarkar, G. Sengupta and B. Nath Tiwari, “On the thermodynamic geometry of BTZ black holes,” JHEP 11, 015 (2006) [arXiv:hep-th/0606084 [hep-th]].
- S. H. Hendi, A. Sheykhi, S. Panahiyan and B. Eslam Panah, “Phase transition and thermodynamic geometry of Einstein-Maxwell-dilaton black holes,” Phys. Rev. D 92, no.6, 064028 (2015) [arXiv:1509.08593 [hep-th]].
- R. Banerjee, B. R. Majhi and S. Samanta, “Thermogeometric phase transition in a unified framework,” Phys. Lett. B 767, 25-28 (2017) [arXiv:1611.06701 [gr-qc]]. B
- K. Bhattacharya and B. R. Majhi, “Thermogeometric description of the van der Waals like phase transition in AdS black holes,” Phys. Rev. D 95, no.10, 104024 (2017) [arXiv:1702.07174 [gr-qc]].
- K. Bhattacharya and B. R. Majhi, “Thermogeometric study of van der Waals like phase transition in black holes: an alternative approach,” Phys. Lett. B 802, 135224 (2020) [arXiv:1903.10370 [gr-qc]].
- P. V. P. Cunha, E. Berti and C. A. R. Herdeiro, “Light-Ring Stability for Ultracompact Objects,” Phys. Rev. Lett. 119, no.25, 251102 (2017) [arXiv:1708.04211 [gr-qc]].
- P. V. P. Cunha and C. A. R. Herdeiro, “Stationary black holes and light rings,” Phys. Rev. Lett. 124, no.18, 181101 (2020) [arXiv:2003.06445 [gr-qc]].
- S. W. Wei, “Topological Charge and Black Hole Photon Spheres,” Phys. Rev. D 102, no.6, 064039 (2020) [arXiv:2006.02112 [gr-qc]].
- M. Guo and S. Gao, “Universal Properties of Light Rings for Stationary Axisymmetric Spacetimes,” Phys. Rev. D 103, no.10, 104031 (2021) [arXiv:2011.02211 [gr-qc]].
- P. V. P. Cunha, C. A. R. Herdeiro and J. P. A. Novo, “Light rings on stationary axisymmetric spacetimes: blind to the topology and able to coexist,” [arXiv:2401.05495 [gr-qc]].
- S. W. Wei, Y. X. Liu and R. B. Mann, “Black Hole Solutions as Topological Thermodynamic Defects,” Phys. Rev. Lett. 129, no.19, 191101 (2022) [arXiv:2208.01932 [gr-qc]].
- S. W. Wei and Y. X. Liu, “Topology of black hole thermodynamics,” Phys. Rev. D 105, no.10, 104003 (2022) [arXiv:2112.01706 [gr-qc]].
- P. K. Yerra and C. Bhamidipati, “Topology of black hole thermodynamics in Gauss-Bonnet gravity,” Phys. Rev. D 105, no.10, 104053 (2022) [arXiv:2202.10288 [gr-qc]].
- P. K. Yerra and C. Bhamidipati, “Topology of Born-Infeld AdS black holes in 4D novel Einstein-Gauss-Bonnet gravity,” Phys. Lett. B 835, 137591 (2022) [arXiv:2207.10612 [gr-qc]].
- N. J. Gogoi and P. Phukon, “Thermodynamic topology of 4D dyonic AdS black holes in different ensembles,” Phys. Rev. D 108, no.6, 066016 (2023) [arXiv:2304.05695 [hep-th]].
- N. J. Gogoi and P. Phukon, “Topology of thermodynamics in R-charged black holes,” Phys. Rev. D 107, no.10, 106009 (2023)
- P. K. Yerra, C. Bhamidipati and S. Mukherji, “Topology of critical points and Hawking-Page transition,” Phys. Rev. D 106, no.6, 064059 (2022) [arXiv:2208.06388 [hep-th]].
- P. K. Yerra, C. Bhamidipati and S. Mukherji, “Topology of Hawking-Page transition in Born-Infeld AdS black holes,” J. Phys. Conf. Ser. 2667, no.1, 012031 (2023) [arXiv:2312.10784 [gr-qc]].
- F. Barzi, H. El Moumni and K. Masmar, “Rényi Topology of Charged-flat Black Hole: Hawking-Page and Van-der-Waals Phase Transitions,” [arXiv:2309.14069 [hep-th]].
- M. B. Ahmed, D. Kubiznak and R. B. Mann, “Vortex-antivortex pair creation in black hole thermodynamics,” Phys. Rev. D 107, no.4, 046013 (2023) [arXiv:2207.02147 [hep-th]].
- S. W. Wei and Y. X. Liu, “Topology of equatorial timelike circular orbits around stationary black holes,” Phys. Rev. D 107, no.6, 064006 (2023) [arXiv:2207.08397 [gr-qc]].
- Z. Y. Fan, “Topological interpretation for phase transitions of black holes,” Phys. Rev. D 107, no.4, 044026 (2023) [arXiv:2211.12957 [gr-qc]].
- D. Wu, “Topological classes of rotating black holes,” Phys. Rev. D 107, no.2, 024024 (2023) [arXiv:2211.15151 [gr-qc]].
- C. Fang, J. Jiang and M. Zhang, “Revisiting thermodynamic topologies of black holes,” JHEP 01, 102 (2023) [arXiv:2211.15534 [gr-qc]].
- D. Wu, “Classifying topology of consistent thermodynamics of the four-dimensional neutral Lorentzian NUT-charged spacetimes,” Eur. Phys. J. C 83, no.5, 365 (2023) [arXiv:2302.01100 [gr-qc]].
- D. Wu and S. Q. Wu, “Topological classes of thermodynamics of rotating AdS black holes,” Phys. Rev. D 107, no.8, 084002 (2023) [arXiv:2301.03002 [hep-th]].
- R. Li, C. Liu, K. Zhang and J. Wang, “Topology of the landscape and dominant kinetic path for the thermodynamic phase transition of the charged Gauss-Bonnet-AdS black holes,” Phys. Rev. D 108, no.4, 044003 (2023) [arXiv:2302.06201 [gr-qc]].
- S. W. Wei, Y. P. Zhang, Y. X. Liu and R. B. Mann, “Static spheres around spherically symmetric black hole spacetime,” Phys. Rev. Res. 5, no.4, 043050 (2023) [arXiv:2303.06814 [gr-qc]].
- M. R. Alipour, M. A. S. Afshar, S. Noori Gashti and J. Sadeghi, “Topological classification and black hole thermodynamics,” Phys. Dark Univ. 42, 101361 (2023) [arXiv:2305.05595 [gr-qc]].
- M. Zhang and J. Jiang, “Bulk-boundary thermodynamic equivalence: a topology viewpoint,” JHEP 06, 115 (2023) [arXiv:2303.17515 [hep-th]].
- J. Sadeghi, S. Noori Gashti, M. R. Alipour and M. A. S. Afshar, “Bardeen black hole thermodynamics from topological perspective,” Annals Phys. 455, 169391 (2023) [arXiv:2306.05692 [hep-th]].
- C. Liu, R. Li, K. Zhang and J. Wang, “Generalized free energy and dynamical state transition of the dyonic AdS black hole in the grand canonical ensemble,” JHEP 11, 068 (2023) [arXiv:2309.13931 [gr-qc]].
- Y. S. Duan and M. L. Ge, “SU(2) Gauge Theory and Electrodynamics with N Magnetic Monopoles,” Sci. Sin. 9, no.11, 1072 (1979).
- Y. S. Duan, “The structure of the topological current”, SLAC-PUB-3301, (1984).
- E. Goursat, “A Course in Mathematical Analysis”, translated by E. R. Hedrick (Dover, New York, 1904), Vol. I.
- Y. S. Duan, S. Li and G. H. Yang, “The bifurcation theory of the Gauss-Bonnet-Chern topological current and Morse function,” Nucl. Phys. B 514, 705-720 (1998) .
- A.S.Schwarz, “Topology for physicists”, DOI: 10.1007/978-3-662-02998-5
- D. F. Jardim, M. E. Rodrigues and M. J. S. Houndjo, “Thermodynamics of phantom Reissner-Nordstrom-AdS black hole,” Eur. Phys. J. Plus 127, 123 (2012) [arXiv:1202.2830 [gr-qc]].
- M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69, 1849-1851 (1992) [arXiv:hep-th/9204099 [hep-th]].
- M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48, 1506-1525 (1993) [erratum: Phys. Rev. D 88, 069902 (2013)] [arXiv:gr-qc/9302012 [gr-qc]].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.