Exploring the distribution and impact of bosonic dark matter in neutron stars (2402.18696v1)
Abstract: The presence of dark matter (DM) within neutron stars (NSs) can be introduced by different accumulation scenarios in which DM and baryonic matter (BM) may interact only through the gravitational force. In this work, we consider asymmetric self-interacting bosonic DM which can reside as a dense core inside the NS or form an extended halo around it. It is seen that depending on the boson mass ($m_{\chi}$), self-coupling constant ($\lambda$) and DM fraction ($F_{\chi}$), the maximum mass, radius and tidal deformability of NSs with DM admixture will be altered significantly. The impact of DM causes some modifications in the observable features induced solely by the BM component. Here, we focus on the widely used nuclear matter equation of state (EoS) called DD2 for describing NS matter. We show that by involving DM in NSs, the corresponding observational parameters will be changed to be consistent with the latest multi-messenger observations of NSs. It is seen that for $m_{\chi}\gtrsim200$ MeV and $\lambda\lesssim2\pi$, DM admixed NSs with $4\%\lesssim F_{\chi}\lesssim20\%$ are consistent with the maximum mass and tidal deformability constraints.
- Baryakhtar, M.; et al. Dark Matter In Extreme Astrophysical Environments. In Proceedings of the 2022 Snowmass Summer Study, 3 2022, [arXiv:hep-ph/2203.07984].
- Exoplanets as Sub-GeV Dark Matter Detectors. Phys. Rev. Lett. 2021, 126, 161101, [arXiv:hep-ph/2010.00015]. https://doi.org/10.1103/PhysRevLett.126.161101.
- Dark matter in compact stars 2023. [arXiv:hep-ph/2307.14435].
- Floating dark matter in celestial bodies. JCAP 2023, 10, 057, [arXiv:hep-ph/2209.09834]. https://doi.org/10.1088/1475-7516/2023/10/057.
- Dark Matter Effects On Neutron Star Properties. Phys. Rev. D 2018, 97, 123007, [arXiv:astro-ph.CO/1804.01418]. https://doi.org/10.1103/PhysRevD.97.123007.
- Dark halos around neutron stars and gravitational waves. JCAP 2019, 07, 012, [arXiv:hep-ph/1803.03266]. https://doi.org/10.1088/1475-7516/2019/07/012.
- Exotic compact objects: The dark white dwarf. Phys. Rev. D 2022, 105, 115034, [arXiv:astro-ph.HE/2201.05626]. https://doi.org/10.1103/PhysRevD.105.115034.
- Dark Matter–admixed Rotating White Dwarfs as Peculiar Compact Objects. Astrophys. J. 2022, 941, 115, [arXiv:astro-ph.HE/2111.12894]. https://doi.org/10.3847/1538-4357/aca09b.
- Improved bounds on the bosonic dark matter with pulsars in the Milky Way. JCAP 2023, 08, 016, [arXiv:astro-ph.HE/2303.05107]. https://doi.org/10.1088/1475-7516/2023/08/016.
- Bosonic dark matter in neutron stars and its effect on gravitational wave signal. Phys. Rev. D 2022, 105, 023001, [arXiv:astro-ph.HE/2109.03801]. https://doi.org/10.1103/PhysRevD.105.023001.
- Bosonic Dark Matter in Light of the NICER Precise Mass-Radius Measurements 2022. [arXiv:astro-ph.HE/2210.17308].
- Tidal deformability of fermion-boson stars: Neutron stars admixed with ultralight dark matter. Phys. Rev. D 2023, 108, 064009, [arXiv:gr-qc/2303.04089]. https://doi.org/10.1103/PhysRevD.108.064009.
- Constraining bosonic asymmetric dark matter with neutron star mass-radius measurements. Phys. Rev. D 2023, 107, 103051, [arXiv:astro-ph.HE/2208.03282]. https://doi.org/10.1103/PhysRevD.107.103051.
- The Effects of Self-interacting Bosonic Dark Matter on Neutron Star Properties. Astrophys. J. 2023, 953, 115, [arXiv:astro-ph.HE/2209.10905]. https://doi.org/10.3847/1538-4357/ace104.
- Neutron stars: New constraints on asymmetric dark matter. Phys. Rev. D 2020, 102, 063028. https://doi.org/10.1103/PhysRevD.102.063028.
- Neutron star mass in dark matter clumps 2023. [arXiv:astro-ph.GA/2311.00113]. https://doi.org/10.1093/mnras/stad3311.
- Can LIGO Detect Nonannihilating Dark Matter? Phys. Rev. Lett. 2023, 131, 091401, [arXiv:hep-ph/2302.07898]. https://doi.org/10.1103/PhysRevLett.131.091401.
- Shahrbaf, M. Appearance of sexaquark in the core of neutron stars as a candidate of dark matter. J. Phys. Conf. Ser. 2023, 2536, 012001. https://doi.org/10.1088/1742-6596/2536/1/012001.
- Sexaquark dilemma in neutron stars and its solution by quark deconfinement. Phys. Rev. D 2022, 105, 103005, [arXiv:nucl-th/2202.00652]. https://doi.org/10.1103/PhysRevD.105.103005.
- Neutron Stars with Baryon Number Violation, Probing Dark Sectors. Symmetry 2022, 14, 518, [arXiv:hep-ph/2201.02637]. https://doi.org/10.3390/sym14030518.
- R-modes as a New Probe of Dark Matter in Neutron Stars 2023. [arXiv:astro-ph.HE/2305.05664].
- Consequences of neutron decay inside neutron stars. JCAP 2022, 10, 028, [arXiv:hep-ph/2203.02758]. https://doi.org/10.1088/1475-7516/2022/10/028.
- Dark stars: Gravitational and electromagnetic observables. Physical Review D 2017, 96. https://doi.org/10.1103/physrevd.96.023005.
- Generating ultra compact boson stars with modified scalar potentials 2023. [arXiv:astro-ph.HE/2308.01254].
- Exotic Compact Objects with Two Dark Matter Fluids. Astrophys. J. 2023, 944, 130, [arXiv:gr-qc/2210.13697]. https://doi.org/10.3847/1538-4357/acb3be.
- Boson Stars from Self-Interacting Dark Matter. JHEP 2016, 02, 028, [arXiv:hep-ph/1511.04474]. https://doi.org/10.1007/JHEP02(2016)028.
- Neutron star–axion star collisions in the light of multimessenger astronomy. Mon. Not. Roy. Astron. Soc. 2019, 483, 908–914, [arXiv:astro-ph.HE/1808.04746]. https://doi.org/10.1093/mnras/sty3158.
- Axion star collisions with black holes and neutron stars in full 3D numerical relativity. Phys. Rev. D 2018, 98, 083020, [arXiv:gr-qc/1808.04668]. https://doi.org/10.1103/PhysRevD.98.083020.
- Huth, S.; et al. Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions. Nature 2022, 606, 276–280, [arXiv:nucl-th/2107.06229]. https://doi.org/10.1038/s41586-022-04750-w.
- Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations. Astrophys. J. Lett. 2021, 918, L29, [arXiv:astro-ph.HE/2105.06981]. https://doi.org/10.3847/2041-8213/ac089a.
- Dark matter or regular matter in neutron stars? How to tell the difference from the coalescence of compact objects. Phys. Rev. D 2023, 107, 115028, [arXiv:astro-ph.HE/2211.08590]. https://doi.org/10.1103/PhysRevD.107.115028.
- Tidal Love numbers of novel and admixed celestial objects. Phys. Rev. D 2022, 106, 123027, [arXiv:gr-qc/2205.15337]. https://doi.org/10.1103/PhysRevD.106.123027.
- Tidal deformability as a probe of dark matter in neutron stars. In Proceedings of the 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, 12 2021, [arXiv:astro-ph.HE/2112.14231]. https://doi.org/10.1142/9789811269776_0307.
- Second Love number of dark compact planets and neutron stars with dark matter. Phys. Rev. D 2022, 105, 043013, [arXiv:astro-ph.HE/2111.06197]. https://doi.org/10.1103/PhysRevD.105.043013.
- Radial oscillations of dark matter admixed neutron stars. Phys. Rev. D 2023, 107, 103039, [arXiv:nucl-th/2211.12808]. https://doi.org/10.1103/PhysRevD.107.103039.
- Rotating dark matter admixed neutron stars. Phys. Rev. D 2023, 108, 103016, [arXiv:gr-qc/2311.07714]. https://doi.org/10.1103/PhysRevD.108.103016.
- Fermion Proca Stars: Vector Dark Matter Admixed Neutron Stars 2023. [arXiv:gr-qc/2310.17291].
- Dark matter effect on realistic equation of state in neutron stars. Physical Review D 2017, 96. https://doi.org/10.1103/physrevd.96.083004.
- Effects of dark matter on the nuclear and neutron star matter. Mon. Not. Roy. Astron. Soc. 2020, 495, 4893–4903, [arXiv:nucl-th/2002.00594]. https://doi.org/10.1093/mnras/staa1435.
- Dark matter effects on tidal deformabilities and moment of inertia in a hadronic model with short-range correlations. Phys. Rev. D 2022, 106, 043010, [arXiv:nucl-th/2208.06067]. https://doi.org/10.1103/PhysRevD.106.043010.
- Investigating Dark Matter-Admixed Neutron Stars with NITR Equation of State in Light of PSR J0952-0607. JCAP 2023, 10, 073, [arXiv:nucl-th/2304.05100]. https://doi.org/10.1088/1475-7516/2023/10/073.
- Constraining the mass of fermionic dark matter from its feeble interaction with hadronic matter via dark mediators in neutron stars 2024. [arXiv:astro-ph.HE/2401.14419].
- Effects of mirror dark matter on neutron stars. Astroparticle Physics 2009, 32, 278–284. https://doi.org/10.1016/j.astropartphys.2009.09.005.
- Have neutron stars a dark matter core? Phys. Lett. B 2011, 695, 19–21, [arXiv:astro-ph.HE/1005.0857]. https://doi.org/10.1016/j.physletb.2010.11.021.
- Rezaei, Z. Fuzzy dark matter in relativistic stars. Mon. Not. Roy. Astron. Soc. 2023, 524, 2015–2024, [arXiv:astro-ph.HE/2306.17665]. https://doi.org/10.1093/mnras/stad1975.
- Exploring robust correlations between fermionic dark matter model parameters and neutron star properties: A two-fluid perspective 2023. [arXiv:hep-ph/2308.00650].
- Rezaei, Z. STUDY OF DARK-MATTER ADMIXED NEUTRON STARS USING THE EQUATION OF STATE FROM THE ROTATIONAL CURVES OF GALAXIES. The Astrophysical Journal 2017, 835, 33. https://doi.org/10.1088/1361-6528/aa5273.
- Dynamical evolution of dark matter admixed neutron stars. Phys. Rev. D 2022, 105, 023010, [arXiv:gr-qc/2201.02274]. https://doi.org/10.1103/PhysRevD.105.023010.
- A new criterion for the existence of dark matter in neutron stars 2023. [arXiv:astro-ph.HE/2312.17288].
- Asymmetric Dark Matter. Phys. Rev. D 2009, 79, 115016, [arXiv:hep-ph/0901.4117]. https://doi.org/10.1103/PhysRevD.79.115016.
- Rapid neutron star cooling triggered by accumulated dark matter 2023. [arXiv:astro-ph.HE/2309.03894].
- Cooling of Neutron Stars admixed with light dark matter: A case study. Phys. Lett. B 2022, 827, 136937, [arXiv:hep-ph/2202.00702]. https://doi.org/10.1016/j.physletb.2022.136937.
- Faint light of old neutron stars from dark matter capture and detectability at the James Webb Space Telescope 2022. [arXiv:astro-ph.HE/2205.05048].
- Heating neutron stars with inelastic dark matter and relativistic targets. Phys. Rev. D 2023, 107, 103024, [arXiv:hep-ph/2301.08767]. https://doi.org/10.1103/PhysRevD.107.103024.
- Bounds on long-lived dark matter mediators from neutron stars. Phys. Rev. D 2023, 107, 115016, [arXiv:hep-ph/2212.12547]. https://doi.org/10.1103/PhysRevD.107.115016.
- Compact dark objects in neutron star mergers. Phys. Rev. D 2023, 107, 083002, [arXiv:astro-ph.HE/2012.11908]. https://doi.org/10.1103/PhysRevD.107.083002.
- Gravitational wave signatures of dark matter cores in binary neutron star mergers by using numerical simulations. Phys. Rev. D 2019, 100, 044049, [arXiv:gr-qc/1905.08551]. https://doi.org/10.1103/PhysRevD.100.044049.
- Search for Dark Matter Effects on Gravitational Signals from Neutron Star Mergers. Phys. Lett. B 2018, 781, 607–610, [arXiv:astro-ph.CO/1710.05540]. https://doi.org/10.1016/j.physletb.2018.04.048.
- Numerical Simulations of Dark Matter Admixed Neutron Star Binaries. Particles 2022, 5, 273–286, [arXiv:gr-qc/2206.10887]. https://doi.org/10.3390/particles5030024.
- Quasi-equilibrium configurations of binary systems of dark matter admixed neutron stars 2023. [arXiv:gr-qc/2301.03568].
- Effects of dark matter on the inspiral properties of the binary neutron star 2021. [arXiv:astro-ph.HE/2104.01815].
- Miller, M.C.; et al. PSR J0030+0451 Mass and Radius from NICER𝑁𝐼𝐶𝐸𝑅NICERitalic_N italic_I italic_C italic_E italic_R Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24, [arXiv:astro-ph.HE/1912.05705]. https://doi.org/10.3847/2041-8213/ab50c5.
- Riley, T.E.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27, [arXiv:astro-ph.HE/2105.06980]. https://doi.org/10.3847/2041-8213/ac0a81.
- Watts, A.L. Constraining the neutron star equation of state using Pulse Profile Modeling. AIP Conf. Proc. 2019, 2127, 020008, [arXiv:astro-ph.HE/1904.07012]. https://doi.org/10.1063/1.5117798.
- Dark Matter Admixed Neutron Star Properties in the Light of X-Ray Pulse Profile Observations. Astrophys. J. 2022, 936, 69, [arXiv:astro-ph.HE/2204.05560]. https://doi.org/10.3847/1538-4357/ac8544.
- Probing axions via light circular polarization and event horizon telescope. JCAP 2023, 04, 017, [arXiv:hep-ph/2209.13572]. https://doi.org/10.1088/1475-7516/2023/04/017.
- Chavanis, P.H. Maximum mass of relativistic self-gravitating Bose-Einstein condensates with repulsive or attractive |φ𝜑\varphiitalic_φ|4 self-interaction. Phys. Rev. D 2023, 107, 103503, [arXiv:gr-qc/2211.13237]. https://doi.org/10.1103/PhysRevD.107.103503.
- Boson Stars: Gravitational Equilibria of Selfinteracting Scalar Fields. Phys. Rev. Lett. 1986, 57, 2485–2488. https://doi.org/10.1103/PhysRevLett.57.2485.
- Visinelli, L. Boson Stars and Oscillatons: A Review 2021. [arXiv:gr-qc/2109.05481].
- Dynamical Boson Stars. Living Rev. Rel. 2017, 20, 5, [arXiv:gr-qc/1202.5809]. https://doi.org/10.12942/lrr-2012-6.
- Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 2010, 81, 015803, [arXiv:nucl-th/0908.2344]. https://doi.org/10.1103/PhysRevC.81.015803.
- Solution to the hyperon puzzle using dark matter. Phys. Dark Univ. 2020, 30, 100622, [arXiv:gr-qc/2011.00984]. https://doi.org/10.1016/j.dark.2020.100622.
- Strange magnetars admixed with fermionic dark matter. JCAP 2023, 04, 012, [arXiv:hep-ph/2209.10959]. https://doi.org/10.1088/1475-7516/2023/04/012.
- Dark matter effects on hybrid star properties. Eur. Phys. J. C 2023, 83, 266, [arXiv:hep-ph/2212.12615]. https://doi.org/10.1140/epjc/s10052-023-11416-y.
- Confronting Strange Stars with Compact-Star Observations and New Physics. Universe 2023, 9, 202, [arXiv:astro-ph.HE/2304.09614]. https://doi.org/10.3390/universe9050202.
- Strange stars within bosonic and fermionic admixed dark matter. JCAP 2023, 05, 034, [arXiv:astro-ph.HE/2301.00567]. https://doi.org/10.1088/1475-7516/2023/05/034.
- Axion effects in the stability of hybrid stars. Phys. Rev. D 2022, 106, L121301, [arXiv:hep-ph/2206.01631]. https://doi.org/10.1103/PhysRevD.106.L121301.
- Vector dark boson mediated feeble interaction between fermionic dark matter and strange quark matter in quark stars. Mon. Not. Roy. Astron. Soc. 2022, 517, 518–525, [arXiv:hep-ph/2209.09021]. https://doi.org/10.1093/mnras/stac2675.
- Radial Oscillations of Quark Stars Admixed with Dark Matter. Universe 2022, 8, 34, [arXiv:hep-ph/2111.00091]. https://doi.org/10.3390/universe8010034.
- Miller, M.C.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28, [arXiv:astro-ph.HE/2105.06979]. https://doi.org/10.3847/2041-8213/ac089b.
- PSR J0952−--0607: The Fastest and Heaviest Known Galactic Neutron Star. Astrophys. J. Lett. 2022, 934, L18, [arXiv:astro-ph.HE/2207.05124]. https://doi.org/10.3847/2041-8213/ac8007.
- Cromartie, H.T.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astron. 2019, 4, 72–76, [arXiv:astro-ph.HE/1904.06759]. https://doi.org/10.1038/s41550-019-0880-2.
- Riley, T.E.; et al. A NICER𝑁𝐼𝐶𝐸𝑅NICERitalic_N italic_I italic_C italic_E italic_R View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21, [arXiv:astro-ph.HE/1912.05702]. https://doi.org/10.3847/2041-8213/ab481c.
- Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 2020, 370, 1450–1453, [arXiv:astro-ph.HE/2002.11355]. https://doi.org/10.1126/science.abb4317.
- GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 2017, 119. https://doi.org/10.1103/physrevlett.119.161101.
- Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016, [arXiv:astro-ph.HE/0911.3535]. https://doi.org/10.1103/PhysRevD.81.123016.
- Abbott, B.P.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101, [arXiv:gr-qc/1805.11581]. https://doi.org/10.1103/PhysRevLett.121.161101.
- Towards Uncovering Dark Matter Effects on Neutron Star Properties: A Machine Learning Approach. Particles 2024, 7, 80–95, [arXiv:hep-ph/2401.07773]. https://doi.org/10.3390/particles7010005.
- Effects of fermionic dark matter on properties of neutron stars. Phys. Rev. C 2014, 89, 025803, [arXiv:astro-ph.SR/1305.7354]. https://doi.org/10.1103/PhysRevC.89.025803.
- Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007, [arXiv:astro-ph.HE/1610.03361]. https://doi.org/10.1103/RevModPhys.89.015007.
- Hinderer, T. Tidal Love numbers of neutron stars. Astrophys. J. 2008, 677, 1216–1220, [arXiv:astro-ph/0711.2420]. https://doi.org/10.1086/533487.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.