Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unifying Finite-Temperature Dynamical and Excited-State Quantum Phase Transitions (2402.18622v2)

Published 28 Feb 2024 in cond-mat.stat-mech, cond-mat.quant-gas, and quant-ph

Abstract: In recent years, various notions of dynamical phase transitions have emerged to describe far-from-equilibrium criticality. A unifying framework connecting these different concepts is still missing, and would provide significant progress towards understanding far-from-equilibrium quantum many-body universality. Initializing our system in a thermal ensemble and subsequently performing quantum quenches in the Lipkin-Meshkov-Glick model, we establish a direct connection between excited-state quantum phase transitions (ESQPTs) and two major types of dynamical phase transitions (DPTs), by relating the phases of the latter to the critical energies and conservation laws in the former. Our work provides further insight into how various concepts of non-ground-state criticality are intimately connected, paving the way for a unified framework of far-from-equilibrium universality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (100)
  1. Takashi Mori, Tatsuhiko N Ikeda, Eriko Kaminishi,  and Masahito Ueda, “Thermalization and prethermalization in isolated quantum systems: a theoretical overview,”  51, 112001 (2018).
  2. Markus Heyl, “Dynamical quantum phase transitions: a review,” Reports on Progress in Physics 81, 054001 (2018).
  3. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics (Cambridge University Press, 1996).
  4. Michael Moeckel and Stefan Kehrein, “Interaction quench in the hubbard model,” Phys. Rev. Lett. 100, 175702 (2008).
  5. Martin Eckstein and Marcus Kollar, “Nonthermal steady states after an interaction quench in the falicov-kimball model,” Phys. Rev. Lett. 100, 120404 (2008).
  6. Bruno Sciolla and Giulio Biroli, “Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional bose-hubbard model,” Phys. Rev. Lett. 105, 220401 (2010).
  7. Bruno Sciolla and Giulio Biroli, “Dynamical transitions and quantum quenches in mean-field models,” Journal of Statistical Mechanics: Theory and Experiment 2011, P11003 (2011).
  8. Bojan Žunkovič, Alessandro Silva,  and Michele Fabrizio, “Dynamical phase transitions and loschmidt echo in the infinite-range xy model,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20150160 (2016).
  9. Ingo Homrighausen, Nils O. Abeling, Valentin Zauner-Stauber,  and Jad C. Halimeh, “Anomalous dynamical phase in quantum spin chains with long-range interactions,” Phys. Rev. B 96, 104436 (2017).
  10. Johannes Lang, Bernhard Frank,  and Jad C. Halimeh, “Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field ising model,” Phys. Rev. B 97, 174401 (2018a).
  11. Johannes Lang, Bernhard Frank,  and Jad C. Halimeh, “Dynamical quantum phase transitions: A geometric picture,” Phys. Rev. Lett. 121, 130603 (2018b).
  12. Ángel L. Corps and Armando Relaño, “Dynamical and excited-state quantum phase transitions in collective systems,” Phys. Rev. B 106, 024311 (2022).
  13. Ángel L. Corps and Armando Relaño, “Theory of dynamical phase transitions in quantum systems with symmetry-breaking eigenstates,” Phys. Rev. Lett. 130, 100402 (2023).
  14. Ángel L. Corps, Pedro Pérez-Fernández,  and Armando Relaño, “Relaxation time as a control parameter for exploring dynamical phase diagrams,” Phys. Rev. B 108, 174305 (2023).
  15. Martin Eckstein, Marcus Kollar,  and Philipp Werner, “Thermalization after an interaction quench in the hubbard model,” Phys. Rev. Lett. 103, 056403 (2009).
  16. Michael Moeckel and Stefan Kehrein, “Crossover from adiabatic to sudden interaction quenches in the hubbard model: prethermalization and non-equilibrium dynamics,” New Journal of Physics 12, 055016 (2010).
  17. Naoto Tsuji, Martin Eckstein,  and Philipp Werner, “Nonthermal antiferromagnetic order and nonequilibrium criticality in the hubbard model,” Phys. Rev. Lett. 110, 136404 (2013).
  18. Anushya Chandran, Arun Nanduri, S. S. Gubser,  and S. L. Sondhi, “Equilibration and coarsening in the quantum o⁢(n)𝑜𝑛o(n)italic_o ( italic_n ) model at infinite n𝑛nitalic_n,” Phys. Rev. B 88, 024306 (2013).
  19. Anna Maraga, Alessio Chiocchetta, Aditi Mitra,  and Andrea Gambassi, “Aging and coarsening in isolated quantum systems after a quench: Exact results for the quantum O⁢(n)O𝑛\text{O}(n)O ( italic_n ) model with n𝑛nitalic_n →→\rightarrow→ ∞\infty∞,” Phys. Rev. E 92, 042151 (2015).
  20. Pietro Smacchia, Michael Knap, Eugene Demler,  and Alessandro Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
  21. Alessio Chiocchetta, Andrea Gambassi, Sebastian Diehl,  and Jamir Marino, “Dynamical crossovers in prethermal critical states,” Phys. Rev. Lett. 118, 135701 (2017).
  22. Jad C. Halimeh and Mohammad F. Maghrebi, “Quantum aging and dynamical universality in the long-range o⁢(n→∞)𝑜→𝑛o(n\rightarrow\infty)italic_o ( italic_n → ∞ ) model,” Phys. Rev. E 103, 052142 (2021).
  23. Jad C. Halimeh, Valentin Zauner-Stauber, Ian P. McCulloch, Inés de Vega, Ulrich Schollwöck,  and Michael Kastner, “Prethermalization and persistent order in the absence of a thermal phase transition,” Phys. Rev. B 95, 024302 (2017).
  24. Bojan Žunkovič, Markus Heyl, Michael Knap,  and Alessandro Silva, “Dynamical quantum phase transitions in spin chains with long-range interactions: Merging different concepts of nonequilibrium criticality,” Phys. Rev. Lett. 120, 130601 (2018).
  25. A. Gambassi and P. Calabrese, “Quantum quenches as classical critical films,” Europhysics Letters 95, 66007 (2011).
  26. Tim Langen, Thomas Gasenzer,  and Jörg Schmiedmayer, “Prethermalization and universal dynamics in near-integrable quantum systems,” Journal of Statistical Mechanics: Theory and Experiment 2016, 064009 (2016).
  27. M. Heyl, A. Polkovnikov,  and S. Kehrein, “Dynamical quantum phase transitions in the transverse-field ising model,” Phys. Rev. Lett. 110, 135704 (2013).
  28. M. Heyl, “Dynamical quantum phase transitions in systems with broken-symmetry phases,” Phys. Rev. Lett. 113, 205701 (2014).
  29. Markus Heyl, “Scaling and universality at dynamical quantum phase transitions,” Phys. Rev. Lett. 115, 140602 (2015).
  30. C. Karrasch and D. Schuricht, “Dynamical phase transitions after quenches in nonintegrable models,” Phys. Rev. B 87, 195104 (2013).
  31. Szabolcs Vajna and Balázs Dóra, “Disentangling dynamical phase transitions from equilibrium phase transitions,” Phys. Rev. B 89, 161105 (2014).
  32. F. Andraschko and J. Sirker, “Dynamical quantum phase transitions and the loschmidt echo: A transfer matrix approach,” Phys. Rev. B 89, 125120 (2014).
  33. Jad C. Halimeh and Valentin Zauner-Stauber, “Dynamical phase diagram of quantum spin chains with long-range interactions,” Phys. Rev. B 96, 134427 (2017).
  34. Valentin Zauner-Stauber and Jad C. Halimeh, “Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines,” Phys. Rev. E 96, 062118 (2017).
  35. Nicolò Defenu, Tilman Enss,  and Jad C. Halimeh, “Dynamical criticality and domain-wall coupling in long-range hamiltonians,” Phys. Rev. B 100, 014434 (2019).
  36. Philipp Uhrich, Nicolò Defenu, Rouhollah Jafari,  and Jad C. Halimeh, “Out-of-equilibrium phase diagram of long-range superconductors,” Phys. Rev. B 101, 245148 (2020).
  37. Jad C. Halimeh, Maarten Van Damme, Lingzhen Guo, Johannes Lang,  and Philipp Hauke, “Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions,” Phys. Rev. B 104, 115133 (2021a).
  38. Anupam Mitra, Tameem Albash, Philip Daniel Blocher, Jun Takahashi, Akimasa Miyake, Grant W. Biedermann,  and Ivan H. Deutsch, “Macrostates vs. microstates in the classical simulation of critical phenomena in quench dynamics of 1d ising models,”   (2023), arXiv:2310.08567 [quant-ph] .
  39. Ángel L. Corps, Pavel Stránský,  and Pavel Cejnar, “Mechanism of dynamical phase transitions: The complex-time survival amplitude,” Physical Review B 107, 094307 (2023).
  40. Szabolcs Vajna and Balázs Dóra, “Topological classification of dynamical phase transitions,” Phys. Rev. B 91, 155127 (2015).
  41. Markus Schmitt and Stefan Kehrein, “Dynamical quantum phase transitions in the kitaev honeycomb model,” Phys. Rev. B 92, 075114 (2015).
  42. N. Sedlmayr, P. Jaeger, M. Maiti,  and J. Sirker, “Bulk-boundary correspondence for dynamical phase transitions in one-dimensional topological insulators and superconductors,” Phys. Rev. B 97, 064304 (2018a).
  43. I. Hagymási, C. Hubig, Ö. Legeza,  and U. Schollwöck, “Dynamical topological quantum phase transitions in nonintegrable models,” Phys. Rev. Lett. 122, 250601 (2019).
  44. T. Masłowski and N. Sedlmayr, “Quasiperiodic dynamical quantum phase transitions in multiband topological insulators and connections with entanglement entropy and fidelity susceptibility,” Phys. Rev. B 101, 014301 (2020).
  45. Sergio Porta, Fabio Cavaliere, Maura Sassetti,  and Niccolò Traverso Ziani, “Topological classification of dynamical quantum phase transitions in the xy chain,” Scientific Reports 10, 12766 (2020).
  46. Ryo Okugawa, Hiroki Oshiyama,  and Masayuki Ohzeki, “Mirror-symmetry-protected dynamical quantum phase transitions in topological crystalline insulators,” Phys. Rev. Res. 3, 043064 (2021).
  47. K. Wrześniewski, I. Weymann, N. Sedlmayr,  and T. Domański, “Dynamical quantum phase transitions in a mesoscopic superconducting system,” Phys. Rev. B 105, 094514 (2022).
  48. T. Masłowski and N. Sedlmayr, “Dynamical bulk-boundary correspondence and dynamical quantum phase transitions in higher-order topological insulators,” Phys. Rev. B 108, 094306 (2023).
  49. Utso Bhattacharya and Amit Dutta, “Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems,” Phys. Rev. B 96, 014302 (2017).
  50. Simon A. Weidinger, Markus Heyl, Alessandro Silva,  and Michael Knap, “Dynamical quantum phase transitions in systems with continuous symmetry breaking,” Phys. Rev. B 96, 134313 (2017).
  51. S De Nicola, B Doyon,  and M J Bhaseen, “Stochastic approach to non-equilibrium quantum spin systems,” Journal of Physics A: Mathematical and Theoretical 52, 05LT02 (2019).
  52. Tomohiro Hashizume, Jad C. Halimeh, Philipp Hauke,  and Debasish Banerjee, “Ground-state phase diagram of quantum link electrodynamics in (2+1)21(2+1)( 2 + 1 )-d,” SciPost Phys. 13, 017 (2022).
  53. Nils O. Abeling and Stefan Kehrein, ‘‘Quantum quench dynamics in the transverse field ising model at nonzero temperatures,” Phys. Rev. B 93, 104302 (2016).
  54. Utso Bhattacharya, Souvik Bandyopadhyay,  and Amit Dutta, “Mixed state dynamical quantum phase transitions,” Phys. Rev. B 96, 180303 (2017).
  55. M. Heyl and J. C. Budich, “Dynamical topological quantum phase transitions for mixed states,” Phys. Rev. B 96, 180304 (2017).
  56. N. Sedlmayr, M. Fleischhauer,  and J. Sirker, “Fate of dynamical phase transitions at finite temperatures and in open systems,” Phys. Rev. B 97, 045147 (2018b).
  57. Yi-Ping Huang, Debasish Banerjee,  and Markus Heyl, “Dynamical quantum phase transitions in u(1) quantum link models,” Phys. Rev. Lett. 122, 250401 (2019).
  58. Simon Panyella Pedersen and Nikolaj Thomas Zinner, “Lattice gauge theory and dynamical quantum phase transitions using noisy intermediate-scale quantum devices,” Phys. Rev. B 103, 235103 (2021).
  59. Rasmus Berg Jensen, Simon Panyella Pedersen,  and Nikolaj Thomas Zinner, “Dynamical quantum phase transitions in a noisy lattice gauge theory,” Phys. Rev. B 105, 224309 (2022).
  60. Jad C. Halimeh, Maarten Van Damme, Torsten V. Zache, Debasish Banerjee,  and Philipp Hauke, “Achieving the quantum field theory limit in far-from-equilibrium quantum link models,” Quantum 6, 878 (2022).
  61. Maarten Van Damme, Torsten V. Zache, Debasish Banerjee, Philipp Hauke,  and Jad C. Halimeh, “Dynamical quantum phase transitions in spin-s⁢u⁢(1)𝑠𝑢1su(1)italic_s italic_u ( 1 ) quantum link models,” Phys. Rev. B 106, 245110 (2022).
  62. Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu,  and Kübra Yeter-Aydeniz, “Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory,”   (2023), arXiv:2210.03089 [quant-ph] .
  63. Domenico Pomarico, Leonardo Cosmai, Paolo Facchi, Cosmo Lupo, Saverio Pascazio,  and Francesco V. Pepe, “Dynamical quantum phase transitions of the schwinger model: Real-time dynamics on ibm quantum,” Entropy 25 (2023), 10.3390/e25040608.
  64. Maarten Van Damme, Jean-Yves Desaules, Zlatko Papić,  and Jad C. Halimeh, “Anatomy of dynamical quantum phase transitions,” Phys. Rev. Res. 5, 033090 (2023).
  65. Longwen Zhou, Qing-hai Wang, Hailong Wang,  and Jiangbin Gong, “Dynamical quantum phase transitions in non-hermitian lattices,” Phys. Rev. A 98, 022129 (2018).
  66. Longwen Zhou and Qianqian Du, “Non-hermitian topological phases and dynamical quantum phase transitions: a generic connection,” New Journal of Physics 23, 063041 (2021).
  67. Ryusuke Hamazaki, “Exceptional dynamical quantum phase transitions in periodically driven systems,” Nature Communications 12, 5108 (2021).
  68. Debashish Mondal and Tanay Nag, “Anomaly in the dynamical quantum phase transition in a non-hermitian system with extended gapless phases,” Phys. Rev. B 106, 054308 (2022).
  69. Debashish Mondal and Tanay Nag, “Finite-temperature dynamical quantum phase transition in a non-hermitian system,” Phys. Rev. B 107, 184311 (2023).
  70. Debashish Mondal and Tanay Nag, ‘‘Persistent anomaly in dynamical quantum phase transition in long-range non-hermitian p𝑝pitalic_p-wave kitaev chian,”   (2024), arXiv:2402.04603 [cond-mat.mes-hall] .
  71. Jad C. Halimeh, Nikolay Yegovtsev,  and Victor Gurarie, “Dynamical quantum phase transitions in many-body localized systems,”   (2019), arXiv:1903.03109 [cond-mat.stat-mech] .
  72. Daniele Trapin, Jad C. Halimeh,  and Markus Heyl, “Unconventional critical exponents at dynamical quantum phase transitions in a random ising chain,” Phys. Rev. B 104, 115159 (2021).
  73. P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B. P. Lanyon, M. Heyl, R. Blatt,  and C. F. Roos, “Direct observation of dynamical quantum phase transitions in an interacting many-body system,” Phys. Rev. Lett. 119, 080501 (2017).
  74. N. Fläschner, D. Vogel, M. Tarnowski, B. S. Rem, D.-S. Lühmann, M. Heyl, J. C. Budich, L. Mathey, K. Sengstock,  and C. Weitenberg, “Observation of dynamical vortices after quenches in a system with topology,” Nature Physics 14, 265–268 (2018).
  75. Xinfang Nie, Bo-Bo Wei, Xi Chen, Ze Zhang, Xiuzhu Zhao, Chudan Qiu, Yu Tian, Yunlan Ji, Tao Xin, Dawei Lu,  and Jun Li, “Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators,” Phys. Rev. Lett. 124, 250601 (2020).
  76. M.A. Caprio, P. Cejnar,  and F. Iachello, “Excited state quantum phase transitions in many-body systems,” Annals of Physics 323, 1106–1135 (2008).
  77. Pavel Cejnar, Pavel Stránský, Michal Macek,  and Michal Kloc, “Excited-state quantum phase transitions,” Journal of Physics A: Mathematical and Theoretical 54, 133001 (2021).
  78. A. Relaño, J. M. Arias, J. Dukelsky, J. E. García-Ramos,  and P. Pérez-Fernández, “Decoherence as a signature of an excited-state quantum phase transition,” Physical Review A 78, 060102 (2008).
  79. P. Pérez-Fernández, A. Relaño, J. M. Arias, J. Dukelsky,  and J. E. García-Ramos, “Decoherence due to an excited-state quantum phase transition in a two-level boson model,” Physical Review A 80, 032111 (2009).
  80. P. Pérez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García-Ramos,  and A. Relaño, “Quantum quench influenced by an excited-state phase transition,” Physical Review A 83, 033802 (2011).
  81. Lea F. Santos and Francisco Pérez-Bernal, “Structure of eigenstates and quench dynamics at an excited-state quantum phase transition,” Physical Review A 92, 050101 (2015).
  82. C. M. Lóbez and A. Relaño, “Entropy, chaos, and excited-state quantum phase transitions in the dicke model,” Physical Review E 94, 012140 (2016).
  83. Francisco Pérez‐Bernal and Lea F. Santos, “Effects of excited state quantum phase transitions on system dynamics,” Fortschritte der Physik 65, 1600035 (2017).
  84. Michal Kloc, Pavel Stránský,  and Pavel Cejnar, “Quantum quench dynamics in dicke superradiance models,” Physical Review A 98, 013836 (2018).
  85. Wassilij Kopylov and Tobias Brandes, “Time delayed control of excited state quantum phase transitions in the lipkin–meshkov–glick model,” New Journal of Physics 17, 103031 (2015).
  86. Qian Wang and H. T. Quan, “Probing the excited-state quantum phase transition through statistics of loschmidt echo and quantum work,” Physical Review E 96, 032142 (2017).
  87. Ricardo Puebla, Armando Relaño,  and Joaquín Retamosa, “Excited-state phase transition leading to symmetry-breaking steady states in the dicke model,” Physical Review A 87, 023819 (2013).
  88. Ricardo Puebla and Armando Relaño, “Non-thermal excited-state quantum phase transitions,” EPL (Europhysics Letters) 104, 50007 (2014).
  89. Ricardo Puebla and Armando Relaño, “Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model,” Physical Review E 92, 012101 (2015).
  90. Ángel L. Corps and Armando Relaño, “Constant of motion identifying excited-state quantum phases,” Physical Review Letters 127, 130602 (2021).
  91. Ángel L. Corps and Armando Relaño, “Dynamical and excited-state quantum phase transitions in collective systems,” Physical Review B 106, 024311 (2022).
  92. Ángel L. Corps and Armando Relaño, “Theory of dynamical phase transitions in quantum systems with symmetry-breaking eigenstates,” Physical Review Letters 130, 100402 (2023).
  93. Jad C. Halimeh, Daniele Trapin, Maarten Van Damme,  and Markus Heyl, “Local measures of dynamical quantum phase transitions,” Phys. Rev. B 104, 075130 (2021b).
  94. Yantao Wu, “Dynamical quantum phase transitions of quantum spin chains with a loschmidt-rate critical exponent equal to 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG,” Phys. Rev. B 101, 064427 (2020).
  95. H.J. Lipkin, N. Meshkov,  and A.J. Glick, “Validity of many-body approximation methods for a solvable model: (i). exact solutions and perturbation theory,” Nuclear Physics 62, 188–198 (1965).
  96. N. Meshkov, A.J. Glick,  and H.J. Lipkin, “Validity of many-body approximation methods for a solvable model: (ii). linearization procedures,” Nuclear Physics 62, 199–210 (1965).
  97. A.J. Glick, H.J. Lipkin,  and N. Meshkov, “Validity of many-body approximation methods for a solvable model: (iii). diagram summations,” Nuclear Physics 62, 211–224 (1965).
  98. P. Pérez-Fernández and A. Relaño, “From thermal to excited-state quantum phase transition: The dicke model,” Physical Review E 96, 012121 (2017).
  99. Ángel L. Corps and Armando Relaño, “General theory for discrete symmetry-breaking equilibrium states,”   (2023), 10.48550/arXiv.2303.18020.
  100. See Supplemental Material for supporting numerical results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 34 likes.

Upgrade to Pro to view all of the tweets about this paper: