Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dark matter bound-state formation in the Sun (2402.18535v2)

Published 28 Feb 2024 in hep-ph and astro-ph.HE

Abstract: The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. D. March-Russell and S. M. West, Phys. Lett. B 676, 133 (2009), arXiv:0812.0559 [astro-ph] .
  2. M. Pospelov and A. Ritz, Phys. Lett. B 671, 391 (2009), arXiv:0810.1502 [hep-ph] .
  3. R. Laha and E. Braaten, Phys. Rev. D 89, 103510 (2014), arXiv:1311.6386 [hep-ph] .
  4. B. von Harling and K. Petraki, JCAP 12, 033 (2014), arXiv:1407.7874 [hep-ph] .
  5. R. Laha, Phys. Rev. D 92, 083509 (2015), arXiv:1505.02772 [hep-ph] .
  6. L. Pearce and A. Kusenko, Phys. Rev. D 87, 123531 (2013), arXiv:1303.7294 [hep-ph] .
  7. R. Garani and S. Palomares-Ruiz, JCAP 05, 042 (2022), arXiv:2104.12757 [hep-ph] .
  8. A. A. Abud et al. (DUNE), JCAP 10, 065 (2021), arXiv:2107.09109 [hep-ex] .
  9. R. Abbasi et al. (IceCube), Phys. Rev. D 105, 062004 (2022), arXiv:2111.09970 [astro-ph.HE] .
  10. M. Zakeri and Y.-F. Zhou, JCAP 04, 026 (2022), arXiv:2109.11662 [hep-ph] .
  11. A. Dutta Banik, Nucl. Phys. B 998, 116394 (2024), arXiv:2304.04721 [hep-ph] .
  12. T. T. Q. Nguyen and T. M. P. Tait, Phys. Rev. D 107, 115016 (2023), arXiv:2212.12547 [hep-ph] .
  13. M. I. Gresham and K. M. Zurek, Phys. Rev. D 99, 083008 (2019), arXiv:1809.08254 [astro-ph.CO] .
  14. W. H. Press and D. N. Spergel, Astrophys. J. 296, 679 (1985).
  15. K. Griest and D. Seckel, Nucl. Phys. B 283, 681 (1987), [Erratum: Nucl.Phys.B 296, 1034–1036 (1988)].
  16. M. B. Wise and Y. Zhang, JHEP 02, 023 (2015), [Erratum: JHEP 10, 165 (2015)], arXiv:1411.1772 [hep-ph] .
  17. D. N. Spergel and W. H. Press, Astrophys. J. 294, 663 (1985).
  18. R. Garani and S. Palomares-Ruiz, JCAP 05, 007 (2017), arXiv:1702.02768 [hep-ph] .
  19. J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).
  20. M. B. Wise and Y. Zhang, Phys. Rev. D 90, 055030 (2014), [Erratum: Phys.Rev.D 91, 039907 (2015)], arXiv:1407.4121 [hep-ph] .
  21. L. D. Landau and E. M. Lifshits, Quantum Mechanics, Course of Theoretical Physics, Vol. v.3 (Butterworth-Heinemann, Oxford, 1991).
  22. A. R. Zentner, Phys. Rev. D 80, 063501 (2009), arXiv:0907.3448 [astro-ph.HE] .
  23. R. Catena and A. Widmark, JCAP 12, 016 (2016), arXiv:1609.04825 [astro-ph.CO] .
  24. C. Gaidau and J. Shelton, JCAP 06, 022 (2019), arXiv:1811.00557 [hep-ph] .
  25. C. Gaidau and J. Shelton, JCAP 01, 016 (2022), arXiv:2110.02234 [hep-ph] .
  26. E. Richard et al. (Super-Kamiokande), Phys. Rev. D 94, 052001 (2016), arXiv:1510.08127 [hep-ex] .
  27. K. Abe et al. (Super-Kamiokande), Phys. Rev. D 104, 122002 (2021), arXiv:2109.11174 [astro-ph.HE] .
  28. S. Abe et al. (KamLAND), Astrophys. J. 925, 14 (2022), arXiv:2108.08527 [astro-ph.HE] .
  29. B. Zhou and J. F. Beacom,   (2023), arXiv:2311.05675 [hep-ph] .
  30. A. M. Suliga and J. F. Beacom, Phys. Rev. D 108, 043035 (2023), arXiv:2306.11090 [hep-ph] .
  31. G. Krnjaic, Phys. Rev. D 94, 073009 (2016), arXiv:1512.04119 [hep-ph] .
  32. M. W. Winkler, Phys. Rev. D99, 015018 (2019), arXiv:1809.01876 [hep-ph] .
  33. D. Cross et al. (DES),  (2023), arXiv:2304.10128 [astro-ph.CO] .
  34. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  35. S. Adhikari et al.,   (2022), arXiv:2207.10638 [astro-ph.CO] .
  36. E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 [astro-ph.CO] .
  37. P. Athron et al. (GAMBIT), Eur. Phys. J. C 79, 38 (2019), arXiv:1808.10465 [hep-ph] .
  38. J. Aalbers et al. (LZ), Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
  39. D. Yang and H.-B. Yu, JCAP 09, 077 (2022), arXiv:2205.03392 [astro-ph.CO] .
  40. S. Cassel, J. Phys. G 37, 105009 (2010), arXiv:0903.5307 [hep-ph] .
  41. L. Landau and E. Lifshitz, Mechanics: Volume 1, Course of theoretical physics (Elsevier Science, 1976).
  42. C. Kouvaris and P. Tinyakov, Phys. Rev. D 83, 083512 (2011), arXiv:1012.2039 [astro-ph.HE] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.