Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unraveling the Complexity of the Dzyaloshinskii-Moriya Interaction in Layered Magnets: The Full Magnitude and Chirality Control (2402.18466v2)

Published 28 Feb 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: Chirality is an inherent characteristics of some objects in nature. In magnetism chiral magnetic textures can be formed in systems with broken inversion symmetry and due to an antisymmetric magnetic interaction, known as Dzyaloshinskii--Moriya interaction (DMI). Here, aiming on a fundamental understanding of this chiral interaction on the atomic scale, we design several synthetic layered structures composed of alternating atomic layers of 3d ferromagnetic metals epitaxially grown on Ir(001). We demonstrate both experimentally and theoretically that the atomistic DMI depends critically not only on the orbital occupancy of the interface magnetic layer but also on the sequence of the atomic layers. The effect is attributed to the complexity of the electronic structure and the contribution of different orbitals to the hybridization and DMI. We anticipate that our results provide guidelines for controlling both the chirality and the magnitude of the atomistic DMI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures (Springer Berlin Heidelberg, 2011).
  2. I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, Journal of Physics and Chemistry of Solids 4, 241 (1958).
  3. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960).
  4. A. Fert and P. M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett. 44, 1538 (1980).
  5. A. Crepieux and C. Lacroix, Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface, J. Magn. Magn. Mater. 182, 341 (1998).
  6. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature 442, 797 (2006).
  7. A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications, Nature Reviews Materials 2, 17031 (2017).
  8. S. Tsurkan and K. Zakeri, Giant Dzyaloshinskii-Moriya interaction in epitaxial Co/Fe bilayers with C2⁢vsubscript𝐶2𝑣C_{2v}italic_C start_POSTSUBSCRIPT 2 italic_v end_POSTSUBSCRIPT symmetry, Physical Review B 102, 060406 (2020).
  9. L. Udvardi and L. Szunyogh, Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films, Phys. Rev. Lett. 102, 207204 (2009).
  10. K. Zakeri, Probing of the interfacial Heisenberg and Dzyaloshinskii–Moriya exchange interaction by magnon spectroscopy, Journal of Physics: Condensed Matter 29, 013001 (2017).
  11. K. Zakeri, Elementary spin excitations in ultrathin itinerant magnets, Phys. Rep. 545, 47 (2014).
  12. K. Zakeri, H. Qin, and A. Ernst, Unconventional magnonic surface and interface states in layered ferromagnets, Commun. Phys. 4, 18 (2021a).
  13. K. Heinz and L. Hammer, Nanostructure formation on Ir(100), Prog. Surf. Sci. 84, 2 (2009).
  14. J. Küppers and H. Michel, Preparation of Ir(100)–1×1111{\times}11 × 1 surface structures by surface reactions and its reconstruction kinetics as determined with LEED, ups and work function measurements, Applications of Surface Science 3, 179 (1979).
  15. H. Ebert, D. Ködderitzsch, and J. Minár, Calculating condensed matter properties using the KKR-green's function method—recent developments and applications, Reports on Progress in Physics 74, 096501 (2011).
  16. S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58, 1200 (1980).
  17. S. Mankovsky and H. Ebert, Accurate scheme to calculate the interatomic Dzyaloshinskii-Moriya interaction parameters, Physical Review B 96, 104416 (2017).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube