Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Energy conditions in the $f(R,L,T)$ theory of gravity (2402.18462v2)

Published 28 Feb 2024 in gr-qc and hep-th

Abstract: We construct the energy conditions for the recently proposed $f(R,L,T)$ gravity theory, for which $f$ is a generic function of the Ricci scalar $R$, matter lagrangian density $L$ and trace of the energy-momentum tensor $T$. We analyse two different forms for the $f(R,L,T)$ function within the framework of the Friedmann-Lem^aitre-Robertson-Walker universe. We constrain the model parameters from the energy conditions. This approach allows us to assess the feasibility of specific forms of the $f(R,L,T)$ gravity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. AJ, 116(3):1009–1038, September 1998.
  2. Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 High-Redshift Supernovae. ApJ, 517(2):565–586, June 1999.
  3. Steven Weinberg. The cosmological constant problem. Reviews of Modern Physics, 61(1):1–23, January 1989.
  4. Albert Einstein. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pages 831–839, January 1915.
  5. Mark Trodden. Cosmic Acceleration and Modified Gravity. International Journal of Modern Physics D, 16:2065–2074, January 2007.
  6. Antonio De Felice and Shinji Tsujikawa. f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) Theories. Living Reviews in Relativity, 13(1):3, June 2010.
  7. A. A. Starobinsky. Disappearing cosmological constant in f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity. Soviet Journal of Experimental and Theoretical Physics Letters, 86(3):157–163, October 2007.
  8. Energy conditions in f⁢(R,Lm)𝑓𝑅subscript𝐿𝑚f(R,L_{m})italic_f ( italic_R , italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) gravity. Classical and Quantum Gravity, 29(21):215016, November 2012.
  9. Wormhole solutions in f⁢(R,Lm)𝑓𝑅subscript𝐿𝑚f(R,L_{m})italic_f ( italic_R , italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) gravity. Chinese Journal of Physics, 85:74–88, October 2023.
  10. f⁢(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity. Phys. Rev. D, 84(2):024020, July 2011.
  11. f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) teleparallel gravity and cosmology. Reports on Progress in Physics, 79(10):106901, October 2016.
  12. Cosmological perturbations in f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity. Phys. Rev. D, 83(2):023508, January 2011.
  13. Cosmology in f⁢(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) geometry. Phys. Rev. D, 101(10):103507, May 2020.
  14. Cosmography in f⁢(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) gravity. Phys. Rev. D, 102(12):124029, December 2020.
  15. f⁢(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity. European Physical Journal C, 79(8):708, August 2019.
  16. Baryogenesis in f⁢(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity. European Physical Journal C, 80(3):289, March 2020.
  17. Cosmological perturbation theory in f⁢(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity. J. Cosmology Astropart. Phys., 2022(3):020, March 2022.
  18. Energy conditions in f⁢(Q,T)𝑓𝑄𝑇f(Q,T)italic_f ( italic_Q , italic_T ) gravity. Phys. Scr, 95(9):095003, September 2020.
  19. Constraining f (q, t) gravity from energy conditions. Physics of the Dark Universe, 31:100790, 2021.
  20. Matt Visser. Cosmography: Cosmology without the Einstein equations. General Relativity and Gravitation, 37(9):1541–1548, September 2005.
  21. Cosmography with the Einstein Telescope. Classical and Quantum Gravity, 27(21):215006, November 2010.
  22. Cosmography from well-localized fast radio bursts. Mon. Not. Roy. Astron. Soc., 526(2):1773–1782, December 2023.
  23. Generalizing the coupling between geometry and matter: f⁢(R,Lm,T)𝑓𝑅subscript𝐿𝑚𝑇f(R,L_{m},T)italic_f ( italic_R , italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , italic_T ) gravity. European Physical Journal C, 81(7):615, July 2021.
  24. Frank J. Tipler. Energy conditions and spacetime singularities. Phys. Rev. D, 17(10):2521–2528, May 1978.
  25. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett., 61(13):1446–1449, September 1988.
  26. Energy conditions in f⁢(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) gravity. Phys. Rev. D, 102(2):024057, July 2020.
  27. Tiberiu Harko and Francisco S. N. Lobo. f⁢(R,Lm)𝑓𝑅subscript𝐿𝑚f(R,L_{m})italic_f ( italic_R , italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) gravity. European Physical Journal C, 70(1-2):373–379, November 2010.
  28. Sean M Carroll. An introduction to general relativity: spacetime and geometry. Addison Wesley, 101:102, 2004.
  29. The raychaudhuri equations: A brief review. Pramana, 69:49–76, 2007.
  30. M. Sharif and M. Zubair. Energy conditions in f ( R, T, R μ⁢ν𝜇𝜈{}_{{\mu}{\nu}}start_FLOATSUBSCRIPT italic_μ italic_ν end_FLOATSUBSCRIPT T μ⁢ν𝜇𝜈{}^{{\mu}{\nu}}start_FLOATSUPERSCRIPT italic_μ italic_ν end_FLOATSUPERSCRIPT) gravity. Journal of High Energy Physics, 2013:79, December 2013.
  31. Analysis of f⁢(r,t)𝑓𝑟𝑡f(r,t)italic_f ( italic_r , italic_t ) gravity models through energy conditions. The European Physical Journal Plus, 128:1–11, 2013.
  32. Testing some f⁢(r,t)𝑓𝑟𝑡f(r,t)italic_f ( italic_r , italic_t ) gravity models from energy conditions. Journal of Modern Physics, 4:130–139, 2013.
  33. Energy conditions in f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) gravity. Physical Review D, 76(8):083513, 2007.
  34. Energy conditions constraints on a class of f⁢(r)𝑓𝑟f(r)italic_f ( italic_r )-gravity. International Journal of Modern Physics D, 19(08n10):1315–1321, 2010.
  35. Strong energy condition and the repulsive character of f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) gravity. General Relativity and Gravitation, 49:1–14, 2017.
  36. Matt Visser. Jerk, snap and the cosmological equation of state. Classical and Quantum Gravity, 21(11):2603, 2004.
  37. Matt Visser. Cosmography: Cosmology without the einstein equations. General Relativity and Gravitation, 37:1541–1548, 2005.
  38. Using cosmographic energy conditions to constrain f⁢(R,T)𝑓𝑅𝑇f(R,T)italic_f ( italic_R , italic_T ) gravity models. European Physical Journal Plus, 138(5):469, May 2023.
  39. The pantheon+ analysis: cosmological constraints. The Astrophysical Journal, 938(2):110, 2022.
  40. Extended gravity cosmography. International Journal of Modern Physics D, 28(10):1930016, 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube