Extracting the Luttinger parameter from a single wave function (2402.18364v2)
Abstract: The low-energy physics of Tomonaga-Luttinger liquids (TLLs) is controlled by the Luttinger parameter. We demonstrate that this parameter can be extracted from a single wave function for one-component TLLs with periodic boundary condition. This method relies on the fact that TLLs are described by conformal field theory in which crosscap states can be constructed. The overlaps between the crosscap states and the ground state as well as some excited states are proved to be universal numbers that directly reveal the Luttinger parameter. In microscopic lattice models, crosscap states are formed by putting each pair of antipodal sites into a maximally entangled state. Analytical and numerical calculations are performed in a few representative models to substantiate the conformal field theory prediction. The extracted Luttinger parameters are generally quite accurate in finite-size systems with moderate lengths, so there is no need to perform data fitting and/or finite-size scaling.
- T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2003).
- S.-i. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
- J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
- D. C. Mattis, J. Math. Phys. 15, 609 (1974).
- A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).
- F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
- J. von Delft and H. Schoeller, Ann. Phys. (Leipzig) 7, 225 (1998).
- X.-G. Wen, Adv. Phys. 44, 405 (1995).
- A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).
- S. Nishimoto, Phys. Rev. B 84, 195108 (2011).
- A. M. Läuchli, arXiv:1303.0741 .
- C. M. Herdman and A. Del Maestro, Phys. Rev. B 91, 184507 (2015).
- H.-H. Tu, Phys. Rev. Lett. 119, 261603 (2017).
- H. García-Compeán and N. Quiroz, Euro. Phys. J. Plus 136, 881 (2021).
- H. Li and L.-P. Yang, Phys. Rev. E 104, 024118 (2021).
- H. Shimizu and A. Ueda, arXiv:2402.15507 .
- N. Ishibashi, Mod. Phys. Lett. A 04, 251 (1989).
- J. Caetano and S. Komatsu, J. Stat. Phys. 187, 30 (2022).
- C. Ekman, arXiv:2207.12354 .
- T. Gombor, J. High Energy Phys. 10, 096 (2022).
- T. Gombor, J. High Energy Phys. 03, 146 (2023).
- M. He and Y. Jiang, J. High Energy Phys. 08, 079 (2023).
- M. Cheng and N. Seiberg, SciPost Phys. 15, 051 (2023).
- R. Blumenhagen and E. Plauschinn, Introduction to Conformal Field Theory (Springer Berlin, Heidelberg, 2009).
- I. Brunner and K. Hori, J. High Energy Phys. 2004, 023 (2004).
- See the Appendices for details about the derivation of crosscap states and the analytical calculation of the crosscap state overlap for certain Jastrow-type eigenstates of the spin-1/2 XY and Haldane-Shastry chains .
- F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).
- B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
- Y. Kuramoto and Y. Kato, Dynamics of One-Dimensional Quantum Systems: Inverse-Square Interaction Models (Cambridge University Press, 2009).
- S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
- S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
- U. Schollwöck, Ann. Phys. 326, 96 (2011).
- I. Affleck, Nucl. Phys. B 265, 409 (1986).
- J. Fröhlich and T. Spencer, Commun. Math. Phys. 81, 527 (1981).
- D. Berenstein and P. N. T. Lloyd, arXiv:2311.00057 .
- P. B. Wiegmann, J. Phys. C 11, 1583 (1978).
- H. Matsuo and K. Nomura, J. Phys. A 39, 2953 (2006).
- J. I. Cirac and G. Sierra, Phys. Rev. B 81, 104431 (2010).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.