Generating candidates in global optimization algorithms using complementary energy landscapes (2402.18338v1)
Abstract: Global optimization of atomistic structure rely on the generation of new candidate structures in order to drive the exploration of the potential energy surface (PES) in search for the global minimum energy (GM) structure. In this work, we discuss a type of structure generation, which locally optimizes structures in complementary energy (CE) landscapes. These landscapes are formulated temporarily during the searches as machine learned potentials (MLPs) using local atomistic environments sampled from collected data. The CE landscapes are deliberately incomplete MLPs that rather than mimicking every aspect of the true PES are sought to become much smoother, having only few local minima. This means that local optimization in the CE landscapes may facilitate identification of new funnels in the true PES. We discuss how to construct the CE landscapes and we test their influence on global optimization of a reduced rutile SnO2(110)-(4x1) surface, and an olivine (Mg2SiO4)4 cluster for which we report a new global minimum energy structure.
- C. J. Pickard and R. J. Needs, Journal of Physics: Condensed Matter 23, 053201 (2011).
- D. J. Wales and J. P. K. Doye, The Journal of Physical Chemistry A 101, 5111 (1997).
- S. Goedecker, The Journal of Chemical Physics 120, 9911 (2004).
- R. L. Johnston, Dalton Transactions , 4193 (2003).
- D. M. Deaven and K. M. Ho, Physical Review Letters 75, 288 (1995).
- A. R. Oganov and C. W. Glass, The Journal of Chemical Physics 124, 244704 (2006).
- M. L. Paleico and J. Behler, The Journal of Chemical Physics 152, 094109 (2020a).
- L. B. Vilhelmsen and B. Hammer, The Journal of Chemical Physics 141, 044711 (2014).
- H. Jung, L. Sauerland, S. Stocker, K. Reuter, and J. T. Margraf, “Machine-Learning Driven Global Optimization of Surface Adsorbate Geometries,” (2022).
- M. Arrigoni and G. K. H. Madsen, npj Computational Materials 7, 71 (2021).
- M. L. Paleico and J. Behler, The Journal of Chemical Physics 153, 054704 (2020b).
- C. J. Pickard, Physical Review B 99, 054102 (2019).
- C. Larsen, S. Kaappa, A. L. Vishart, T. Bligaard, and K. W. Jacobsen, “Machine-learning enabled optimization of atomic structures using atoms with fractional existence,” (2022), arXiv:2211.10342 [cond-mat, physics:physics].
- H. Huber, M. Sommer, M. Gubler, and S. Goedecker, “Targeting high symmetry in structure predictions by biasing the potential energy surface,” (2022), arXiv:2209.05342 [cond-mat, physics:physics].
- M. K. Bisbo and B. Hammer, Physical Review Letters 124, 086102 (2020).
- M. K. Bisbo and B. Hammer, Physical Review B 105, 245404 (2022).
- C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (The MIT Press, 2005).
- G. Henkelman and H. Jónsson, The Journal of Chemical Physics 113, 9978 (2000).
- B. Huang and O. A. von Lilienfeld, The Journal of Chemical Physics 145, 161102 (2016).
- J. Behler, The Journal of Chemical Physics 134, 074106 (2011).
- V. L. Deringer and G. Csányi, Physical Review B 95, 094203 (2017).
- M. Valle and A. R. Oganov, Acta Crystallographica. Section A, Foundations of Crystallography 66, 507 (2010).
- A. Li and B. T. Draine, The Astrophysical Journal 550, L213 (2001), publisher: IOP Publishing.
- C. M. Mauney and D. Lazzati, Molecular Astrophysics 12, 1 (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.