Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generating candidates in global optimization algorithms using complementary energy landscapes (2402.18338v1)

Published 28 Feb 2024 in physics.chem-ph and cond-mat.mtrl-sci

Abstract: Global optimization of atomistic structure rely on the generation of new candidate structures in order to drive the exploration of the potential energy surface (PES) in search for the global minimum energy (GM) structure. In this work, we discuss a type of structure generation, which locally optimizes structures in complementary energy (CE) landscapes. These landscapes are formulated temporarily during the searches as machine learned potentials (MLPs) using local atomistic environments sampled from collected data. The CE landscapes are deliberately incomplete MLPs that rather than mimicking every aspect of the true PES are sought to become much smoother, having only few local minima. This means that local optimization in the CE landscapes may facilitate identification of new funnels in the true PES. We discuss how to construct the CE landscapes and we test their influence on global optimization of a reduced rutile SnO2(110)-(4x1) surface, and an olivine (Mg2SiO4)4 cluster for which we report a new global minimum energy structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. C. J. Pickard and R. J. Needs, Journal of Physics: Condensed Matter 23, 053201 (2011).
  2. D. J. Wales and J. P. K. Doye, The Journal of Physical Chemistry A 101, 5111 (1997).
  3. S. Goedecker, The Journal of Chemical Physics 120, 9911 (2004).
  4. R. L. Johnston, Dalton Transactions , 4193 (2003).
  5. D. M. Deaven and K. M. Ho, Physical Review Letters 75, 288 (1995).
  6. A. R. Oganov and C. W. Glass, The Journal of Chemical Physics 124, 244704 (2006).
  7. M. L. Paleico and J. Behler, The Journal of Chemical Physics 152, 094109 (2020a).
  8. L. B. Vilhelmsen and B. Hammer, The Journal of Chemical Physics 141, 044711 (2014).
  9. H. Jung, L. Sauerland, S. Stocker, K. Reuter,  and J. T. Margraf, “Machine-Learning Driven Global Optimization of Surface Adsorbate Geometries,”  (2022).
  10. M. Arrigoni and G. K. H. Madsen, npj Computational Materials 7, 71 (2021).
  11. M. L. Paleico and J. Behler, The Journal of Chemical Physics 153, 054704 (2020b).
  12. C. J. Pickard, Physical Review B 99, 054102 (2019).
  13. C. Larsen, S. Kaappa, A. L. Vishart, T. Bligaard,  and K. W. Jacobsen, “Machine-learning enabled optimization of atomic structures using atoms with fractional existence,”  (2022), arXiv:2211.10342 [cond-mat, physics:physics].
  14. H. Huber, M. Sommer, M. Gubler,  and S. Goedecker, “Targeting high symmetry in structure predictions by biasing the potential energy surface,”  (2022), arXiv:2209.05342 [cond-mat, physics:physics].
  15. M. K. Bisbo and B. Hammer, Physical Review Letters 124, 086102 (2020).
  16. M. K. Bisbo and B. Hammer, Physical Review B 105, 245404 (2022).
  17. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (The MIT Press, 2005).
  18. G. Henkelman and H. Jónsson, The Journal of Chemical Physics 113, 9978 (2000).
  19. B. Huang and O. A. von Lilienfeld, The Journal of Chemical Physics 145, 161102 (2016).
  20. J. Behler, The Journal of Chemical Physics 134, 074106 (2011).
  21. V. L. Deringer and G. Csányi, Physical Review B 95, 094203 (2017).
  22. M. Valle and A. R. Oganov, Acta Crystallographica. Section A, Foundations of Crystallography 66, 507 (2010).
  23. A. Li and B. T. Draine, The Astrophysical Journal 550, L213 (2001), publisher: IOP Publishing.
  24. C. M. Mauney and D. Lazzati, Molecular Astrophysics 12, 1 (2018).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: