Papers
Topics
Authors
Recent
2000 character limit reached

Obtaining properly Pareto optimal solutions of multiobjective optimization problems via the branch and bound method (2402.18015v1)

Published 28 Feb 2024 in math.OC

Abstract: In multiobjective optimization, most branch and bound algorithms provide the decision maker with the whole Pareto front, and then decision maker could select a single solution finally. However, if the number of objectives is large, the number of candidate solutions may be also large, and it may be difficult for the decision maker to select the most interesting solution. As we argue in this paper, the most interesting solutions are the ones whose trade-offs are bounded. These solutions are usually known as the properly Pareto optimal solutions. We propose a branch-and-bound-based algorithm to provide the decision maker with so-called $\epsilon$-properly Pareto optimal solutions. The discarding test of the algorithm adopts a dominance relation induced by a convex polyhedral cone instead of the common used Pareto dominance relation. In this way, the proposed algorithm excludes the subboxes which do not contain $\epsilon$-properly Pareto optimal solution from further exploration. We establish the global convergence results of the proposed algorithm. Finally, the algorithm is applied to benchmark problems as well as to two real-world optimization problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.