Papers
Topics
Authors
Recent
2000 character limit reached

Multistatic-Radar RCS-Signature Recognition of Aerial Vehicles: A Bayesian Fusion Approach (2402.17987v3)

Published 28 Feb 2024 in eess.SP, cs.CV, cs.LG, math.PR, and stat.ML

Abstract: Radar Automated Target Recognition (RATR) for Unmanned Aerial Vehicles (UAVs) involves transmitting Electromagnetic Waves (EMWs) and performing target type recognition on the received radar echo, crucial for defense and aerospace applications. Previous studies highlighted the advantages of multistatic radar configurations over monostatic ones in RATR. However, fusion methods in multistatic radar configurations often suboptimally combine classification vectors from individual radars probabilistically. To address this, we propose a fully Bayesian RATR framework employing Optimal Bayesian Fusion (OBF) to aggregate classification probability vectors from multiple radars. OBF, based on expected 0-1 loss, updates a Recursive Bayesian Classification (RBC) posterior distribution for target UAV type, conditioned on historical observations across multiple time steps. We evaluate the approach using simulated random walk trajectories for seven drones, correlating target aspect angles to Radar Cross Section (RCS) measurements in an anechoic chamber. Comparing against single radar Automated Target Recognition (ATR) systems and suboptimal fusion methods, our empirical results demonstrate that the OBF method integrated with RBC significantly enhances classification accuracy compared to other fusion methods and single radar configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. W. Jiang, Y. Wang, Y. Li, Y. Lin, and W. Shen, “Radar target characterization and deep learning in radar automatic target recognition: A review,” Remote Sensing, vol. 15, no. 15, p. 3742, 2023.
  2. X. Cai, M. Giallorenzo, and K. Sarabandi, “Machine learning-based target classification for mmw radar in autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 678–689, 2021.
  3. H. Learning. Unmanned aircraft systems / drones. [Online]. Available: https://rmas.fad.harvard.edu/unmanned-aircraft-systems-drones
  4. M. W. Lewis, “Drones and the boundaries of the battlefield,” Tex. Int’l LJ, vol. 47, p. 293, 2011.
  5. P. Mahadevan, “The military utility of drones,” CSS Analyses in Security Policy, vol. 78, 2010.
  6. D. Beesley, “Head in the clouds: documenting the rise of personal drone cultures,” Ph.D. dissertation, RMIT University, 2023.
  7. H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48 572–48 634, 2019.
  8. J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis of drones systems: Attacks, limitations, and recommendations,” Internet of Things, vol. 11, p. 100218, 2020.
  9. E. Bassi, “From here to 2023: Civil drones operations and the setting of new legal rules for the european single sky,” Journal of Intelligent & Robotic Systems, vol. 100, pp. 493–503, 2020.
  10. T. Madiega, “Artificial intelligence act,” European Parliament: European Parliamentary Research Service, 2021.
  11. M. Elgan. Why consumer drones represent a special cybersecurity risk. [Online]. Available: https://securityintelligence.com/articles/why-consumer-drones-represent-a-special-cybersecurity-risk/
  12. J. Villasenor. Cyber-physical attacks and drone strikes: The next homeland security threat. [Online]. Available: https://www.brookings.edu/articles/cyber-physical-attacks-and-drone-strikes-the-next-homeland-security-threat/
  13. Y. Mekdad, A. Aris, L. Babun, A. El Fergougui, M. Conti, R. Lazzeretti, and A. S. Uluagac, “A survey on security and privacy issues of uavs,” Computer Networks, vol. 224, p. 109626, 2023.
  14. F. A. Administration. Uas sightings report. [Online]. Available: https://www.faa.gov/uas/resources/public_records/uas_sightings_report
  15. M. A. Richards, J. Scheer, W. Holm, and W. Melvin, “Principles of modern radar, raleigh, nc,” 2010.
  16. V. Chen and M. Martorella, “Inverse synthetic aperture radar,” SciTech Publishing, vol. 55, p. 56, 2014.
  17. M. Ezuma, C. K. Anjinappa, M. Funderburk, and I. Guvenc, “Radar cross section based statistical recognition of uavs at microwave frequencies,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 1, pp. 27–46, 2022.
  18. C. Clemente, A. Balleri, K. Woodbridge, and J. J. Soraghan, “Developments in target micro-doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar,” EURASIP Journal on Advances in Signal Processing, vol. 2013, no. 1, pp. 1–18, 2013.
  19. P. Klaer, A. Huang, P. Sévigny, S. Rajan, S. Pant, P. Patnaik, and B. Balaji, “An investigation of rotary drone herm line spectrum under manoeuvering conditions,” Sensors, vol. 20, no. 20, p. 5940, 2020.
  20. A. Manikas. Ee3-27: Principles of classical and modern radar: Radar cross section (rcs) & radar clutter. [Online]. Available: https://skynet.ee.ic.ac.uk/notes/Radar_4_RCS.pdf
  21. L. M. Ehrman and W. D. Blair, “Using target rcs when tracking multiple rayleigh targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 2, pp. 701–716, 2010.
  22. P. Stinco, M. Greco, F. Gini, and M. La Manna, “Nctr in netted radar systems,” in 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, pp. 301–304.
  23. P. Stinco, M. Greco, F. Gini, and M. L. Manna, “Multistatic target recognition in real operational scenarios,” in 2012 IEEE Radar Conference, 2012, pp. 0354–0359.
  24. T. Derham, S. Doughty, C. Baker, and K. Woodbridge, “Ambiguity functions for spatially coherent and incoherent multistatic radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 230–245, 2010.
  25. H. Meng, Y. Peng, W. Wang, P. Cheng, Y. Li, and W. Xiang, “Spatio-temporal-frequency graph attention convolutional network for aircraft recognition based on heterogeneous radar network,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 6, pp. 5548–5559, 2022.
  26. D. J. Koehler, L. Brenner, and D. Griffin, “The calibration of expert judgment: Heuristics and biases beyond the laboratory,” Heuristics and biases: The psychology of intuitive judgment, pp. 686–715, 2002.
  27. E. C. Yu, A. M. Sprenger, R. P. Thomas, and M. R. Dougherty, “When decision heuristics and science collide,” Psychonomic bulletin & review, vol. 21, pp. 268–282, 2014.
  28. J. Baron, “Heuristics and biases,” The Oxford handbook of behavioral economics and the law, pp. 3–27, 2014.
  29. M. Ezuma, C. K. Anjinappa, V. Semkin, and I. Guvenc, “Comparative analysis of radar cross section based uav classification techniques,” arXiv preprint arXiv:2112.09774, 2021.
  30. A. Register, W. Blair, L. Ehrman, and P. K. Willett, “Using measured rcs in a serial, decentralized fusion approach to radar-target classification,” in 2008 IEEE Aerospace Conference, 2008, pp. 1–8.
  31. H. Cho, J. Chun, T. Lee, S. Lee, and D. Chae, “Spatiotemporal radar target identification using radar cross-section modeling and hidden markov models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 3, pp. 1284–1295, 2016.
  32. C. Bishop, “Pattern recognition and machine learning,” Springer google schola, vol. 2, pp. 531–537, 2006.
  33. V. Semkin, J. Haarla, T. Pairon, C. Slezak, S. Rangan, V. Viikari, and C. Oestges, “Drone rcs measurements (26-40 ghz),” 2019. [Online]. Available: https://dx.doi.org/10.21227/m8xk-dr55
  34. A. Rawat, A. Sharma, and A. Awasthi, “Machine learning based non-cooperative target recognition with dynamic rcs data,” in 2023 IEEE Wireless Antenna and Microwave Symposium (WAMS), 2023, pp. 1–5.
  35. V. Semkin, M. Yin, Y. Hu, M. Mezzavilla, and S. Rangan, “Drone detection and classification based on radar cross section signatures,” in 2020 International Symposium on Antennas and Propagation (ISAP), 2021, pp. 223–224.
  36. N. Mohajerin, J. Histon, R. Dizaji, and S. L. Waslander, “Feature extraction and radar track classification for detecting uavs in civillian airspace,” in 2014 IEEE Radar Conference, 2014, pp. 0674–0679.
  37. L. Lehmann and J. Dall, “Simulation-based approach to classification of airborne drones,” in 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1–6.
  38. L. Deng, “Artificial intelligence in the rising wave of deep learning: The historical path and future outlook [perspectives],” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 180–177, 2018.
  39. E. Wengrowski, M. Purri, K. Dana, and A. Huston, “Deep cnns as a method to classify rotating objects based on monostatic RCS,” IET Radar, Sonar & Navigation, vol. 13, no. 7, pp. 1092–1100, 2019.
  40. C. M. Bishop and H. Bishop, “The deep learning revolution,” in Deep Learning: Foundations and Concepts.   Springer, 2023, pp. 1–22.
  41. J. Mansukhani, D. Penchalaiah, and A. Bhattacharyya, “Rcs based target classification using deep learning methods,” in 2021 2nd International Conference on Range Technology (ICORT).   IEEE, 2021, pp. 1–5.
  42. B. Sehgal, H. S. Shekhawat, and S. K. Jana, “Automatic target recognition using recurrent neural networks,” in 2019 International Conference on Range Technology (ICORT).   IEEE, 2019, pp. 1–5.
  43. R. Fu, M. A. Al-Absi, K.-H. Kim, Y.-S. Lee, A. A. Al-Absi, and H.-J. Lee, “Deep learning-based drone classification using radar cross section signatures at mmwave frequencies,” IEEE Access, vol. 9, pp. 161 431–161 444, 2021.
  44. S. Zhu, Y. Peng, and G. C. Alexandropoulos, “Rcs-based flight target recognition using deep networks with convolutional and bidirectional gru layer,” in Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, 2020, pp. 137–141.
  45. M. A. Bansal, D. R. Sharma, and D. M. Kathuria, “A systematic review on data scarcity problem in deep learning: solution and applications,” ACM Computing Surveys (CSUR), vol. 54, no. 10s, pp. 1–29, 2022.
  46. A. Immer, M. Korzepa, and M. Bauer, “Improving predictions of bayesian neural nets via local linearization,” in International conference on artificial intelligence and statistics.   PMLR, 2021, pp. 703–711.
  47. D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol. 538, no. 7623, p. 20, 2016.
  48. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  49. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
  50. F. Pastor, J. García-González, J. M. Gandarias, D. Medina, P. Closas, A. J. García-Cerezo, and J. M. Gómez-de Gabriel, “Bayesian and neural inference on lstm-based object recognition from tactile and kinesthetic information,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 231–238, 2021.
  51. O. O. Awe, G. O. Opateye, C. A. G. Johnson, O. T. Tayo, and R. Dias, “Weighted hard and soft voting ensemble machine learning classifiers: Application to anaemia diagnosis,” in Sustainable Statistical and Data Science Methods and Practices: Reports from LISA 2020 Global Network, Ghana, 2022.   Springer, 2024, pp. 351–374.
  52. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.
  53. H. Calatrava, B. Duvvuri, H. Li, R. Borsoi, E. Beighley, D. Erdogmus, P. Closas, and T. Imbiriba, “Recursive classification of satellite imaging time-series: An application to water and land cover mapping,” arXiv preprint arXiv:2301.01796, 2023.
  54. N. Smedemark-Margulies, B. Celik, T. Imbiriba, A. Kocanaogullari, and D. Erdoğmuş, “Recursive estimation of user intent from noninvasive electroencephalography using discriminative models,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 4 likes about this paper.