Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computing eigenfrequency sensitivities near exceptional points (2402.17648v1)

Published 27 Feb 2024 in physics.comp-ph, cond-mat.mes-hall, and physics.optics

Abstract: Exceptional points are spectral degeneracies of non-Hermitian systems where both eigenfrequencies and eigenmodes coalesce. The eigenfrequency sensitivities near an exceptional point are significantly enhanced, whereby they diverge directly at the exceptional point. Capturing this enhanced sensitivity is crucial for the investigation and optimization of exceptional-point-based applications, such as optical sensors. We present a numerical framework, based on contour integration and algorithmic differentiation, to accurately and efficiently compute eigenfrequency sensitivities near exceptional points. We demonstrate the framework to an optical microdisk cavity and derive a semi-analytical solution to validate the numerical results. The computed eigenfrequency sensitivities are used to track the exceptional point along an exceptional surface in the parameter space. The presented framework can be applied to any kind of resonance problem, e.g., with arbitrary geometry or with exceptional points of arbitrary order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science 275, 1102 (1997).
  2. P. Senellart, G. Solomon, and A. White, High-performance semiconductor quantum-dot single-photon sources, Nat. Nanotechnol. 12, 1026 (2017).
  3. S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances (American Mathematical Society, Providence, Rhode Island, 2019).
  4. W. Yan, P. Lalanne, and M. Qiu, Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory, Phys. Rev. Lett. 125, 013901 (2020).
  5. J. Jensen and O. Sigmund, Topology optimization for nano-photonics, Laser Photonics Rev. 5, 308 (2011).
  6. M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
  7. T. Kato, Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag Berlin Heidelberg, 1995).
  8. J. Wiersig, Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection, Phys. Rev. Lett. 112, 203901 (2014).
  9. J. Wiersig, Sensors operating at exceptional points: General theory, Phys. Rev. A 93, 033809 (2016).
  10. J. Wiersig, Review of exceptional point-based sensors, Photon. Res. 8, 1457 (2020a).
  11. J. Kullig and J. Wiersig, Microdisk cavities with a Brewster notch, Phys. Rev. Res. 3, 023202 (2021).
  12. P. Chamorro-Posada, F. Fraile-Pelaez, and F. J. Diaz-Otero, Micro-Ring Chains With High-Order Resonances, J. Lightwave Technol. 29, 1514 (2011).
  13. J. Wiersig, Prospects and fundamental limits in exceptional point-based sensing, Nat. Commun. 11, 2454 (2020b).
  14. J. Wiersig, Petermann factors and phase rigidities near exceptional points, Phys. Rev. Res. 5, 033042 (2023).
  15. L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function, Math. Comp. 21, 543 (1967).
  16. P. Kravanja and M. V. Barel, Computing the Zeros of Analytic Functions, Lect. Notes Math. 1727 (Springer, New York, 2000).
  17. A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical Algorithms Based on Analytic Function Values at Roots of Unity, SIAM J. Numer. Anal. 52, 1795 (2014).
  18. J. Wiersig, Revisiting the hierarchical construction of higher-order exceptional points, Phys. Rev. A 106, 063526 (2022).
  19. L. N. Trefethen and J. Weideman, The Exponentially Convergent Trapezoidal Rule, SIAM Rev. 56, 385 (2014).
  20. F. Betz, F. Binkowski, and S. Burger, RPExpand: Software for Riesz projection expansion of resonance phenomena, SoftwareX 15, 100763 (2021).
  21. N. Nikolova, J. Bandler, and M. Bakr, Adjoint techniques for sensitivity analysis in high-frequency structure CAD, IEEE Trans. Microw. Theory Techn. 52, 403 (2004).
  22. A. Griewank, K. Kulshreshtha, and A. Walther, On the numerical stability of algorithmic differentiation, Computing 94, 125 (2012).
  23. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (SIAM, Philadelphia, 2008).
  24. U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation (SIAM, Philadelphia, 2012).
  25. A. Griewank and A. Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw. 26, 19 (2000).
  26. B. Bell, CppAD, https://github.com/coin-or/CppAD.
  27. A. Walther and A. Griewank, Getting started with ADOL-C, in Combinatorial Scientific Computing, edited by U. Naumann and O. Schenk (Chapman-Hall CRC Computational Science, 2012) Chap. 7, pp. 181–202.
  28. M. Hentschel and K. Richter, Quantum chaos in optical systems: The annular billiard, Phys. Rev. E 66, 056207 (2002).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: